Hostname: page-component-669899f699-tzmfd Total loading time: 0 Render date: 2025-04-25T12:25:23.077Z Has data issue: false hasContentIssue false

Vertical back movement of cows during locomotion: detecting lameness with a simple image processing technique

Published online by Cambridge University Press:  14 October 2024

Ibrahim Akin*
Affiliation:
Department of Surgery, Faculty of Veterinary Medicine, Aydin Adnan Menderes University, Isikli, Aydin, Turkey
Yilmaz Kalkan
Affiliation:
Department of Electrical and Electronics Engineering, Faculty of Engineering, Aydin Adnan Menderes University, Aydin, Turkey
Yalcin Alper Ozturan
Affiliation:
Department of Surgery, Faculty of Veterinary Medicine, Aydin Adnan Menderes University, Isikli, Aydin, Turkey
*
Corresponding author: Ibrahim Akin; Email: [email protected]

Abstract

This research paper proposes a simple image processing technique for automatic lameness detection in dairy cows under farm conditions. Seventy-five cows were selected from a dairy farm and visually assessed for a reference/real lameness score (RLS) as they left the milking parlor, while simultaneously being video-captured. The method employed a designated walking path and video recordings processed through image analysis to derive a new computerized automatic lameness score (ALDS) based on calculated factors from back arch posture. The proposed automatic lameness detection system was calibrated using 12 cows, and the remaining 63 were used to evaluate the diagnostic characteristics of the ALDS. The agreement and correlation between ALDS and RLS were investigated. ALDS demonstrated high diagnostic accuracy with 100% sensitivity and specificity and was found to be 100% accurate with a perfect agreement (ρc = 1) and strong correlation (r = 1, P < 0.001) for lameness detection in binary scores (lame/non-lame). Moreover, the ALDS had a strong agreement (ρc = 0.885) and was highly correlated (r = 0.840; 0.796–1.000 95% confidence interval, P < 0.001) with RLS in ordinal scores (lameness severity; LS1 to LS5). Our findings suggest that the proposed method has the potential to compete with vision-based lameness detection methods in dairy cows in farm conditions.

Type
Research Article
Copyright
Copyright © The Author(s), 2024. Published by Cambridge University Press on behalf of Hannah Dairy Research Foundation

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Akin, I and Akin, T (2018) Economic impact of digital dermatitis treatment on a dairy farm: an application of the break-even analysis. Ciencia Rural 48, e20170791.CrossRefGoogle Scholar
Alawneh, JI, Laven, RA and Stevenson, MA (2012) Interval between detection of lameness by locomotion scoring and treatment for lameness: a survival analysis. The Veterinary Journal 193, 622625.CrossRefGoogle ScholarPubMed
Alsaaod, M, Fadul, M and Steiner, A (2019) Automatic lameness detection in cattle. The Veterinary Journal 246, 3544.CrossRefGoogle ScholarPubMed
Beggs, DS, Jongman, EC, Hemsworth, PH and Fisher, AD (2019) Lame cows on Australian dairy farms: a comparison of farmer identified lameness and formal lameness scoring, and the position of lame cows within the milking order. Journal of Dairy Science 102, 15221529.CrossRefGoogle ScholarPubMed
Bicalho, RC and Oikonomou, G (2013) Control and prevention of lameness associated with claw lesions in dairy cows. Livestock Science 156, 96105.CrossRefGoogle Scholar
Blackie, N, Bleach, E and Amory, J (2011) Impact of lameness on gait characteristics and lying behaviour of zero grazed dairy cattle in early lactation. Applied Animal Behaviour Science 129, 6773.CrossRefGoogle Scholar
Blackie, N, Bleach, ECL, Amory, JR and Scaife, JR (2013) Associations between locomotion score and kinematic measures in dairy cows with varying hoof lesion types. Journal of Dairy Science 96, 35643572.CrossRefGoogle ScholarPubMed
Borghart, GM, O'Grady, LE and Somers, JR (2021) Prediction of lameness using automatically recorded activity, behavior and production data in post-parturient Irish dairy cows. Irish Veterinary Journal 74, 4.CrossRefGoogle ScholarPubMed
Bruijnis, MRN, Meijboom, FLB and Stassen, EN (2013) Longevity as an animal welfare issue applied to the case of foot disorders in dairy cattle. Journal of Agricultural and Environmental Ethics 26, 191205.CrossRefGoogle Scholar
Clay, N, Garnett, T and Lorimer, J (2020) Dairy intensification: drivers, impacts and alternatives. Ambio 49, 3548.CrossRefGoogle ScholarPubMed
Cutler, J, Rushen, J, de Passillé, AM, Gibbons, J, Orsel, K, Pajor, E, Barkema, HW, Solano, L, Pellerin, D, Haley, D and Vasseur, E (2017) Producer estimates of prevalence and perceived importance of lameness in dairy herds with tiestalls, freestalls, and automated milking systems. Journal of Dairy Science 100, 98719880.CrossRefGoogle ScholarPubMed
Dutton-Regester, KJ, Wright, JD, Rabiee, AR and Barnes, TS (2019) Understanding dairy farmer intentions to make improvements to their management practices of foot lesions causing lameness in dairy cows. Preventive Veterinary Medicine 171, e104767.CrossRefGoogle ScholarPubMed
Dutton-Regester, KJ, Barnes, TS, Wright, JD and Rabiee, AR (2020) Lameness in dairy cows: farmer perceptions and automated detection technology. Journal of Dairy Research 87, 6771.CrossRefGoogle ScholarPubMed
Efford, N (2000) Digital Image Processing: A Practical Introduction Using Java, Pearson Education. Massachusetts, United States: Addison Wesley.Google Scholar
Endres, MI (2017) The relationship of cow comfort and flooring to lameness disorders in dairy cattle. Veterinary Clinics of North America: Food Animal Practice 33, 227233.Google ScholarPubMed
Espejo, LA, Endres, MI and Salfer, JA (2006) Prevalence of lameness in high-producing Holstein cows housed in freestall barns in Minnesota. Journal of Dairy Science 89, 30523058.CrossRefGoogle ScholarPubMed
Fabian, J, Laven, RA and Whay, HR (2014) The prevalence of lameness on New Zealand dairy farms: a comparison of farmer estimate and locomotion scoring. The Veterinary Journal 201, 3138.CrossRefGoogle ScholarPubMed
Flower, FC and Weary, DM (2009) Gait assessment in dairy cattle. Animal: An International Journal of Animal Bioscience 3, 8795.CrossRefGoogle ScholarPubMed
Flower, FC, Sanderson, DJ and Weary, DM (2005) Hoof pathologies influence kinematic measures of dairy cow gait. Journal of Dairy Science 88, 31663173.CrossRefGoogle ScholarPubMed
Green, L, Borkert, J, Monti, G and Tadich, N (2010) Associations between lesion-specific lameness and the milk yield of 1,635 dairy cows from seven herds in the Xth region of Chile and implications for management of lame dairy cows worldwide. Animal Welfare 19, 419427.CrossRefGoogle Scholar
Herrero, M and Thornton, PK (2013) Livestock and global change: emerging issues for sustainable food systems. Proceedings of the National Academy of Sciences of the United States of America 110, 2087820881.CrossRefGoogle ScholarPubMed
Hoffman, AC, Moore, DA, Vanegas, J and Wenz, JR (2014) Association of abnormal hind-limb postures and back arch with gait abnormality in dairy cattle. Journal of Dairy Science 97, 21782185.CrossRefGoogle ScholarPubMed
Jabbar, KA, Hansen, MF, Smith, ML and Smith, LN (2017) Early and non-intrusive lameness detection in dairy cows using 3-dimensional video. Biosystems Engineering 153, 6369.CrossRefGoogle Scholar
Jiang, B, Song, H, Wang, H and Li, C (2022) Dairy cow lameness detection using a back curvature feature. Computers and Electronics in Agriculture 194, 106729.CrossRefGoogle Scholar
Jimeno-Morenilla, A, Pujol, FA, Molina-Carmona, R, Sánchez-Romero, JL and Pujol, M (2014) Trajectory-based morphological operators: a model for efficient image processing. The Scientific World Journal 2014, 801587.CrossRefGoogle Scholar
Kang, X, Zhang, XD and Liu, GA (2021) Development of computer vision-based lameness detection for dairy cows and discussion of the practical applications. Sensors 21, 753.CrossRefGoogle ScholarPubMed
Koeck, A, Loker, S, Miglior, F, Kelton, DF, Jamrozik, J and Schenkel, FS (2014) Genetic relationships of clinical mastitis, cystic ovaries, and lameness with milk yield and somatic cell score in first-lactation Canadian Holsteins. Journal of Dairy Science 97, 58065813.CrossRefGoogle ScholarPubMed
Leach, KA, Paul, ES, Whay, HR, Barker, ZE, Maggs, CM and Sedgwick, AK (2013) Reducing lameness in dairy herds – overcoming some barriers. Research in Veterinary Science 94, 820825.CrossRefGoogle ScholarPubMed
Liang, D, Arnold, LM, Stowe, CJ, Harmon, RJ and Bewley, JM (2017) Estimating US dairy clinical disease costs with a stochastic simulation model. Journal of Dairy Science 100, 14721486.CrossRefGoogle ScholarPubMed
Lorenzo-Seva, U and Ferrando, PJ (2015) POLYMAT-C: a comprehensive SPSS program for computing the polychoric correlation matrix. Behavior Research Methods 47, 884889.CrossRefGoogle ScholarPubMed
Poursaberi, A, Bahr, C, Pluk, A, Van Nuffel, A and Berckmans, D (2010) Real-time automatic lameness detection based on back posture extraction in dairy cattle: shape analysis of cow with image processing techniques. Computers and Electronics in Agriculture 74, 110119.CrossRefGoogle Scholar
Poursaberi, A, Bahr, C, Pluk, A, Berckmans, D, Veermäe, I, Kokin, E and Pokalainen, V (2011) Online lameness detection in dairy cattle using body movement pattern (BMP). In Proceeding of the 11th International Conference on Intelligent Systems Design and Applications Cordoba, Spain, pp. 732736.CrossRefGoogle Scholar
Renn, N, Onyango, J and Mccormick, W (2014) Digital infrared thermal imaging and manual lameness scoring as a means of lameness detection in cattle. Veterinary Clinical Science 2, 1623.Google Scholar
Sadiq, MB, Ramanoon, SZ, Mossadeq, WMS, Mansor, R and Syed-Hussain, SS (2017) Association between lameness and indicators of dairy cow welfare based on locomotion scoring, body and hock condition, leg hygiene and lying behavior. Animals (Basel) 7, 79.CrossRefGoogle Scholar
Schlageter-Tello, A, Bokkers, EA, Groot Koerkamp, PW, Van Hertem, T, Viazzi, S, Romanini, CE, Halachmi, I, Bahr, C, Berckmans, D and Lokhorst, K (2014) Effect of merging levels of locomotion scores for dairy cows on intra- and inter-rater reliability and agreement. Journal of Dairy Science 97, 55335542.CrossRefGoogle Scholar
Schlageter-Tello, A, Van Hertem, T, Bokkers, EAM, Viazzi, S, Bahr, C and Lokhorst, K (2018) Performance of human observers and an automatic 3-dimensional computer-vision-based locomotion scoring method to detect lameness and hoof lesions in dairy cows. Journal of Dairy Science 101, 63226335.CrossRefGoogle Scholar
Sjöström, K, Fall, N, Blanco-Penedo, I, Duval, JE, Krieger, M and Emanuelson, U (2018) Lameness prevalence and risk factors in organic dairy herds in four European countries. Livestock Science 208, 4450.CrossRefGoogle Scholar
Sprecher, DJ, Hostetler, DE and Kaneene, JB (1997) A lameness scoring system that uses posture and gait to predict dairy cattle reproductive performance. Theriogenology 47, 11791187.CrossRefGoogle ScholarPubMed
Telezhenko, E and Bergsten, C (2005) Influence of floor type on the locomotion of dairy cows. Applied Animal Behaviour Science 93, 183197.CrossRefGoogle Scholar
Thomas, HJ, Remnant, JG, Bollard, NJ, Burrows, A, Whay, HR and Bell, NJ (2016) Recovery of chronically lame dairy cows following treatment for claw horn lesions: a randomised controlled trial. Veterinary Record 178, 116.CrossRefGoogle ScholarPubMed
Thomsen, PT, Munksgaard, L and Tøgersen, FA (2008) Evaluation of a lameness scoring system for dairy cows. Journal of Dairy Science 91, 119126.CrossRefGoogle ScholarPubMed
Van De Gucht, T, Saeys, W, Van Meensel, J, Van Nuffel, A, Vangeyte, J and Lauwers, L (2018) Farm-specific economic value of automatic lameness detection systems in dairy cattle: from concepts to operational simulations. Journal of Dairy Science 101, 637648.CrossRefGoogle ScholarPubMed
Van Hertem, T, Bahr, C, Schlageter-Tello, A, Viazzi, S, Steensels, M, Romanini, CEB, Lokhorst, C, Maltz, E, Halachmi, I and Berckmans, D (2016) Lameness detection in dairy cattle: single predictor versus multivariate analysis of image-based posture processing and behaviour and performance sensing. Animal: An International Journal of Animal Bioscience 10, 15251532.CrossRefGoogle Scholar
Van Nuffel, A, Zwertvaegher, I, Van Weyenberg, S, Pastell, M, Thorup, VM, Bahr, C, Sonck, B and Saeys, W (2015) Lameness detection in dairy cows: part 2. Use of sensors to automatically register changes in locomotion or behavior. Animals 5, 861885.CrossRefGoogle ScholarPubMed
Viazzi, S, Bahr, C, Schlageter-Tello, A, Van Hertem, T, Romanini, CE, Pluk, A, Halachmi, I, Lokhorst, C and Berckmans, D (2013) Analysis of individual classification of lameness using automatic measurement of back posture in dairy cattle. Journal of Dairy Science 96, 257266.CrossRefGoogle ScholarPubMed
Viazzi, S, Bahr, C, Van Hertem, T, Schlageter-Tello, A, Romanini, CEB, Halachmi, I, Lokhorst, C and Berckmans, D (2014) Comparison of a three-dimensional and two-dimensional camera system for automated measurement of back posture in dairy cows. Computers and Electronics in Agriculture 100, 139147.CrossRefGoogle Scholar
Whay, HR, Main, DC, Green, LE and Webster, AJ (2003) Assessment of the welfare of dairy cattle using animal-based measurements: direct observations and investigation of farm records. Veterinary Record 153, 197202.CrossRefGoogle ScholarPubMed
Supplementary material: File

Akin et al. supplementary material

Akin et al. supplementary material
Download Akin et al. supplementary material(File)
File 367.6 KB