Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-22T13:34:30.778Z Has data issue: false hasContentIssue false

Thermorésistance des spores de clostridium tyrobutyricum et Clostridium butyricum

Published online by Cambridge University Press:  01 June 2009

O. Cerf
Affiliation:
Station Centrale de Recherches Laitières et de Technologie des Produits Animaux, 78-Jouy-en-Josas, France
J.-L. Bergere
Affiliation:
Station Centrale de Recherches Laitières et de Technologie des Produits Animaux, 78-Jouy-en-Josas, France
J. Hermier
Affiliation:
Station Centrale de Recherches Laitières et de Technologie des Produits Animaux, 78-Jouy-en-Josas, France

Summary

Clean spores suspensions of 3 strains of Clostridium tyrobutyricum were prepared after culture in dialysis sacs. The survivor curves of the spores heated at 90 °C in 0·033 M phosphate buffer (pH 7·0) or in skim-milk were logarithmic. From the thermal-death-time curves the following values were calculated: D at 121 °C = 0·003−0·012 min and z = 8·4−10 °C when spores were heated in phosphate buffer; D at 121 °C = 0·006−0·008 and z = 9·5−9·9 °C when spores were heated in milk.

When clean spores of 2 strains of Clostridium butyricum were heated at 85 °C in 0·005 M phosphate buffer (pH 7·0) the survivor curves were logarithmic, but ‘tails’ were observed after heating in skim-milk. The value of D at 85 °C was lower than that obtained with spores of C. tyrobutyricum.

Type
Original Articles
Copyright
Copyright © Proprietors of Journal of Dairy Research 1967

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

TRAVAUX CITÉS

Ball, C. O. & Olson, F. C. W. (1957). Sterilization in Food Technology. New York: McGraw-Hill Book Co.Google Scholar
Beerens, H., Castel, M. M. & Put, H. M. C. (1962). Annls Inst. Pasteur, Paris, 103, 117.Google Scholar
Bergére, J.-L. & Hebmier, J. (1965). Annls Inst. Pasteur, Paris 109, 80.Google Scholar
Bryant, M. P. & Burkey, L. A. (1956). J. Bact. 71, 43.CrossRefGoogle Scholar
Dorner, W., Demont, P. & Chavannes, D. (1951). Microbiologie laitiere, Lausanne: Payot.Google Scholar
Elliker, P. R., Anderson, A. W. & Hannesson, G. (1956). J. Dairy Sci. 39, 1611.Google Scholar
Gibbs, B. M. & Hirsch, A. (1956). J. appl. Bact. 19, 129.CrossRefGoogle Scholar
Gibbs, B. M. & Freame, B. (1965). J. appl. Bact. 28, 95.CrossRefGoogle Scholar
Goudkov, A. V. & Sharpe, M. E. (1965). J. appl. Bact. 28, 63.Google Scholar
Gbecz, N., Anellis, A. & Schneider, M. D. (1962). J. Bact. 84, 552.Google Scholar
Hermibr, J., Vergé, J. & Grosclaude, G. (1959). Lait 39, 20.CrossRefGoogle Scholar
Hirsch, A. & Grinsted, E. (1954). J. Dairy Res. 21, 101.CrossRefGoogle Scholar
Prévot, A.R. (1961). Traité de systématique bactérienne. Paris: Dunod.Google Scholar
Schneider, M. D., Grecz, N. & Anellis, A. (1962). J. Bact. 85, 126.CrossRefGoogle Scholar
Sjöström, G. (1943). Milchw. Forsch. 21, 272Google Scholar
(Dairy Sci. Abstr. 6, 187).Google Scholar
Stüssi, D. B. (1961). Landw. Jb. Schweiz 10, 577.Google Scholar
Taylor, J. (1962). J. appl. Bact. 25, 54.CrossRefGoogle Scholar