Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-27T13:24:27.007Z Has data issue: false hasContentIssue false

Synthesis, effectiveness and metabolic fate in cows of the caesium complexing compound ammonium ferric hexacyanoferrate labelled with 14C

Published online by Cambridge University Press:  01 June 2009

Maurice J. Arnaud
Affiliation:
Nestlé Research Centre, Nestec Ltd, Vers-chez-les-Blanc, CH-1000 Lausanne 26, Switzerland
Charles Clement
Affiliation:
Abt. für Ernährungspathologie, Inst, für Tierzucht, Universität, 3012 Bern; mit Versuchsstation an der Eidg. Forschungsanstalt, Grangeneuve, 1725 Posieux, Switzerland
Françoise Getaz
Affiliation:
Nestlé Research Centre, Nestec Ltd, Vers-chez-les-Blanc, CH-1000 Lausanne 26, Switzerland
Fritz Tannhauser
Affiliation:
Allgäuer Alpenmilch AG, 8000 München 80, FRG
Rainer Schoenegge
Affiliation:
Allgäuer Alpenmilch AG, 8000 München 80, FRG
Jürg Blum
Affiliation:
Abt. für Ernährungspathologie, Inst, für Tierzucht, Universität, 3012 Bern; mit Versuchsstation an der Eidg. Forschungsanstalt, Grangeneuve, 1725 Posieux, Switzerland
Werner Giese
Affiliation:
Fachgebiet Medizinische Physik der Tierärztlichen Hochschule, Hannover, FRG

Summary

Adding ammonium ferric hexacyanoferrate (AFCF) to cows' fodder produced after the Chernobyl nuclear accident prevented milk contamination by increasing the faecal elimination of 137Cs. Synthesis of ammonium ferric hexa[14C]-cyanoferrate (AF14CF) and its purification were performed for the study of the metabolic fate of this complex, and the evaluation of the possible release of cyanide. The stability of this colloidal product, tested by anaerobic incubation in rumen juice in vitro, showed no release of free cyanide from AF14CF, but hexacyanoferrate was identified in the rumen juice and 0·13% of the added radioactivity was converted to labelled CO2. AF14CF administered per os to two cows showed a nearly quantitative excretion of radioactivity in faeces during the first 3 d (91–95%). A very low but significant level of radioactivity appeared in plasma, blood cells, expired CO2 and was detected in organs taken 9 d after administration. Total cumulative radioactivity in urine and milk amounted to 0·19–0·47% and 0·068–0·071% respectively for the two cows. Labelled hexacyanoferrate and thiocyanate were identified in the urine and also in faeces. In spite of this relative instability of AFCF in the rumen of cows, the poor absorption of AF14CF degradation products showed that AFCF constitutes an efficient and safe food additive to prevent the absorption of radioactive caesium from ruminant feed and its secretion in milk.

Type
Original articles
Copyright
Copyright © Proprietors of Journal of Dairy Research 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bircher, J. & Preisig, R. 1981 Exhalation of isotopic CO2. Methods in Enzymology 77 39CrossRefGoogle ScholarPubMed
Bozorgzadéh, A. & Catsch, A. 1972 Evaluation of the effectiveness of colloidal and insoluble ferrihexacyanoferrates(II) in removing internally deposited radiocaesium. Archives Internationales de Pharmacodynamie et de Thérapie 197 175188Google Scholar
Brenot, A. & Rinaldi, R. 1967 [A comparative study of the toxicity and efficacy of four ferrocyanides in decontamination of radioactive caesium-134.] Pathologie et Biologie 15 5559Google Scholar
British Industrial Biological Research Association 1969 Short-term feeding study of sodium ferrocyanide in rats. Food and Cosmetics Toxicology 7 409–110CrossRefGoogle Scholar
Comar, C. L. 1955 Radioisotopes in Biology and Agriculture p. 173. New York: McGraw-HillGoogle Scholar
Dvořák, P., Günther, M., Zorn, U. & Catsch, A. 1971 [Metabolism of colloidal ferrihexacyanoferrate(II).] Naunyn-Schmiedebergs Archiv für Pharmakologie 269 4856CrossRefGoogle ScholarPubMed
Furchner, J. E. & Richmond, C. R. 1962 Effects of stable cesium on the retention of cesium-137 by rats. Proceedings of the Society for Experimental Biology and Medicine 110 185187Google Scholar
Gersch, I. & Stieglitz, E. J. 1934 Histochemical studies on the mammalian kidney. I. The glomerular elimination of ferrocyanide in the rabbit, and some related problems. Anatomical Record 58 349367CrossRefGoogle Scholar
Giese, W. 1971 [The in vitro and in vivo behaviour of radiocaesium and possibilities of reducing the radiation dosage.] Tierärztliche Hochschule Hannover, HabilitationsschriftGoogle Scholar
Giese, W. & Hantzsch, D. 1970 [Comparative studies on caesium-137 elimination by various hexacyanoferrate complexes in the rat.] Zentralblatt für Veterinärmedizin Supplement 11 185190 (Second symposium on radioactivity and radiation biology in relation to veterinary medicine, Hannover, 1968)Google Scholar
Giese, W., Schanzel, H. & Hill, H. 1970 [The question of biological decontamination of highly radioactive milk given to pigs. 1. The behaviour of caesium-137 after daily dosage and under specific feeding conditions.] Zentralblatt für Veterinärmedicin Supplement 11 191197 (Second symposium on radioactivity and radiation biology in relation to veterinary medicine, Hannover, 1968).Google Scholar
Haselbach, C. 1983 [Metabolism of the N-containing fraction of variously conserved forages by rumen microorganisms in vitro.] Eidgenössische Technische Hochschule, Zurich Dissertation No. 7257Google Scholar
Havliček, F. 1968 Metabolism of radiocaesium during gestation and lactation as influenced by ferric-cyanoferrate(II). International Journal of Applied Radiation and Isotopes 19 487488Google Scholar
Havliček, F., Kleisner, I., Dvořák, P. & Pospisil, J. 1967 [The use of cyanoferrates for the elimination of radiocaesium in rats and goats.] Strahlentherapie 134 123129Google Scholar
Hazzard, D. G., Withrow, T. J. & Bruckner, B. H. 1969 Verxite flakes for in vivo binding of caesium-134 in cows. Journal of Dairy Science 52 995997CrossRefGoogle ScholarPubMed
Johnson, J. D. & Isom, G. E. 1985 Quantification of expired metabolites following potassium cyanide administration: a new method. Journal of Analytical Toxicology 9 112115Google Scholar
Johnson, J. E., Ward, G. M., Firestone, E. & Knox, K. L. 1968 Metabolism of radioactive caesium (134Cs and 137Cs) and potassium by dairy cattle as influenced by high and low forage diets. Journal of Nutrition 94 282288CrossRefGoogle ScholarPubMed
Kruse, J. M. & Thibault, L. E. 1973 Determination of free cyanide in ferro- and ferricyanides. Analytical Chemistry 45 22602261CrossRefGoogle Scholar
Madshus, K., Strömme, A., Bohne, F. & Nigrović, V. 1966 Diminution of radiocaesium body-burden in dogs and human beings by Prussian Blue. International Journal of Radiation Biology 10 519520Google Scholar
Mraz, F. R., LeNoir, M., Pinajian, J. J. & Patrick, H. 1957 Influence of potassium and sodium on uptake and retention of caesium-134 in rats. Archives of Biochemistry and Biophysics 66 177182CrossRefGoogle Scholar
Nezel, K. 1970 [Prevention of 137Cs uptake by laying hens.] Zeitschrift für Lebensmittel-Untersuchung und-Forschung 144 2531CrossRefGoogle Scholar
Nigrovíc, V. 1963 Enhancement of the excretion of radiocaesium in rats by ferric cyanoferrate(II). International Journal of Radiation Biology 7 307309Google ScholarPubMed
Nigrovíc, V. 1965 Retention of radiocaesium by the rat as influenced by Prussian Blue and other compounds. Physics in Medicine and Biology 10 8191CrossRefGoogle ScholarPubMed
Nigrović, V., Bohne, F. & Madshus, K. 1966 [Elimination of radionuclides (research on radiocaesium).] Strahlentherapie 130 413–119Google Scholar
Richmond, C. R. & Bunde, D. E. 1966 Enhancement of caesium-137 excretion by rats maintained chronically on ferric ferrocyanide. Proceedings of the Society for Experimental Biology and Medicine 121 664670CrossRefGoogle ScholarPubMed
Sansom, B. F. 1966 The metabolism of caesium-137 in dairy cows. Journal of Agricultural Science 66 389393CrossRefGoogle Scholar
Senshu, T. 1966 [In vitro studies on protein synthesis in rumen microorganisms.] Eidgenössische Technische Hochschule, Zurich Dissertation No. 3803Google Scholar
Snipes, M. B. & Riedesel, M. L. 1969 Studies of diet as a factor in 137Cs metabolism in rats. Journal of Nutrition 97 212218CrossRefGoogle Scholar
Thieman, H. W., Ziegler, H. W. & Oakes, W. H. 1979 Determination of soluble cyanide in ferric ammonium ferrocyanide pigments. Drug and Cosmetic Industry 125 7880, 136140Google Scholar
Van Den Hoek, J. 1976 Cesium metabolism in sheep and influence of orally ingested bentonite on cesium absorption and metabolism. Zeitschrift für Tierphysiologie, Tierernährung und Futtermittelkunde 37 315321CrossRefGoogle ScholarPubMed
Willekens, G. J. & Van Den Bulcke, A. 1979 Spectrophotometric determination of trace amounts of free cyanide in Prussian blue. Analyst 104 525530CrossRefGoogle Scholar
World Health Organization 1974 Toxicological evaluation of some food additives including anticaking agents, antimicrobials, antioxidants, emulsifiers and thickening agents. WHO Food Additives Series No. 5 1518Google Scholar
Yacoub, M., Faure, J., Morena, H., Vincent, M. & Faure, H. 1974 [Acute poisoning with prussic acid. Current information on the metabolism of cyanide and its treatment with hydroxycobalamin.] Journal Européen de Toxicologie 7 2229Google Scholar