Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-19T01:48:37.201Z Has data issue: false hasContentIssue false

Study of the fouling of inorganic membranes by acidified milks using scanning electron microscopy and electrophoresis. I. Membrane with pore diameter 0·2 μm

Published online by Cambridge University Press:  01 June 2009

Hamadi Attia
Affiliation:
Laboratoire de Technologie Alimentaire, Centre de Génie et Technologie Alimentaires, Groupe de Recherche et Développement sur les Membranes, Université des Sciences et Techniques du Languedoc, 34095 Montpellier Cédex 05, France
Michel Bennasar
Affiliation:
Laboratoire de Technologie Alimentaire, Centre de Génie et Technologie Alimentaires, Groupe de Recherche et Développement sur les Membranes, Université des Sciences et Techniques du Languedoc, 34095 Montpellier Cédex 05, France
Blas Tarodo De La Fuente
Affiliation:
Laboratoire de Technologie Alimentaire, Centre de Génie et Technologie Alimentaires, Groupe de Recherche et Développement sur les Membranes, Université des Sciences et Techniques du Languedoc, 34095 Montpellier Cédex 05, France

Summary

The fouling of an inorganic microfiltration membrane with an average pore diameter of 0·2 μm obtained in static conditions with milk, acidified milk and acid coagulum was examined using scanning electron microscopy. The structure and porosity of external fouling related to the pH of the milk accounts for the performance and efficiency obtained in microfiltration. Electrophoretic analysis of permeate, characterized by lack of casein, shows that the deposit plays a fundamental role in mass transfer through filter layers. Variations in the physicochemical properties of casein as a function of pH at 50 °C were used to account for the development of the structure of fouling, which comprised three main states: (i) dense deposit of juxtaposed micelles, (ii) loose network formed by chains made up of bonded protein aggregate, (iii) irregular protein aggregate leading to high-porosity deposits. The presence of a protein film strongly adsorbed on the membrane layer of alumina particles is demonstrated.

Type
Original articles
Copyright
Copyright © Proprietors of Journal of Dairy Research 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Association Française de Normalisation 1980 [Determination of total nitrogen content.] In Milk and milk products – methods of analysis] pp. 4852. Paris: AFNORGoogle Scholar
Attia, H. 1987 [Ultrafiltration of acidified milk and acid coagulums with mineral membranes.] Thesis, Université de Montpellier, France.Google Scholar
Attia, H., Bennasar, M. & Tarodo de la Fuente, B. 1988 [Ultrafiltration on a mineral membrane of biologically or chemically acidified milks (with varying pH) and of lactic coagulum.] Lait 68 1332CrossRefGoogle Scholar
Baker, R. W. & Strathmann, H. 1970 Ultrafiltration of macromolecular solutions with high flux membranes. Journal of Applied Polymer Science 14 11971214CrossRefGoogle Scholar
Baklouti, S., Aimar, P. & Sanchez, V. 1984 [Adsorption and matter transfer in ultrafiltration.] Lait 64 206216.CrossRefGoogle Scholar
Bennasar, M. & Tarodo de la Fuente, B. 1987 Model of the fouling mechanism and of the working of a mineral membrane in tangential filtration. Sciences des Aliments 7, 647655Google Scholar
Gernedel, C. 1980 [Ultrafiltration of milk and the factors affecting resistance due to the deposit layer.] Thesis, University of Munich, Germany.Google Scholar
Gillot, J. & Garcera, D. 1984 [New ceramic filter media for crossflow microfiltration and ultrafiltration.] Congress FILTRA 84, pp. 161172. Paris: Société Française de FiltrationGoogle Scholar
Glover, F. A. & Brooker, B. E. 1974 The structure of the deposit formed on the membrane during the concentration of milk by reverse osmosis. Journal of Dairy Research 41 8993CrossRefGoogle Scholar
Hayes, J. F., Dunkerley, J. A. & Muller, L. L. 1974 Studies on whey processing by ultrafiltration. II. Improving permeation rates by preventing fouling. Australian Journal of Dairy Technology 29 132140Google Scholar
Kalab, M. & Harwalkar, V. R. 1973 Milk gel structure. I. Application of scanning electron microscopy to milk and other food gels. Journal of Dairy Science 56 835842CrossRefGoogle Scholar
Lee, D. N. & Merson, R. L. 1975 Examination of cottage cheese whey proteins by scanning electron microscopy: relationship to membrane fouling during ultrafiltration. Journal of Dairy Science 58 14231432CrossRefGoogle ScholarPubMed
Lee, D. N. & Merson, R. L. 1976 Prefiltration of cottage cheese whey to reduce fouling of ultrafiltration membranes. Journal of Food Science 41 403410CrossRefGoogle Scholar
Lenoir, J. 1985 Milk caseins. Revue Laitière Française No. 4440 1723Google Scholar
McMahon, D. J. & Brown, R. J. 1984 Composition, structure, and integrity of casein micelles: a review. Journal of Dairy Science 67 499512CrossRefGoogle Scholar
Merin, U. & Cheryan, M. 1980 Factors affecting the mechanism of flux decline during ultrafiltration of cottage cheese whey. Journal of Food Processing and Preservation 4 183198CrossRefGoogle Scholar
Miranda, G. & Gripon, J. C. 1986 [Cause, nature and technological consequences of proteolysis in milk.] Lait 66 118CrossRefGoogle Scholar
Skudder, P. J., Glover, F. A. & Green, M. L. 1977 An examination of the factors affecting the reverse osmosis of milk with special reference to deposit formation. Journal of Dairy Research 44 293307CrossRefGoogle Scholar
Taddei, C., Aimar, P., Daufin, G. & Sanchez, V. 1988 [Factors affecting fouling of an inorganic membrane during sweet whey ultrafiltration.] Lait 68 157176CrossRefGoogle Scholar
Vetier, C., Bennasar, M. & Tarodo de la Fuente, B. 1986 [Study of the interactions between milk constituents and mineral membranes for microfiltration.] Lait 66 269287CrossRefGoogle Scholar
Vétier, C., Bennasar, M. & Tarodo de la Fuente, B. 1988 Study of the fouling of a mineral microfiltration membrane using scanning electron microscopy and physicochemical analyses in the processing of milk. Journal of Dairy Research 55 381400.CrossRefGoogle Scholar