Hostname: page-component-6d856f89d9-vrt8f Total loading time: 0 Render date: 2024-07-16T04:23:43.487Z Has data issue: false hasContentIssue false

The specificity for κ-casein as the stabilizer of αs-casein and β-casein. I. Replacement of κ-casein by other proteins

Published online by Cambridge University Press:  01 June 2009

Margaret L. Green
Affiliation:
National Institute for Research in Dairying, Shinfield, Reading, RG2 9AT

Summary

The specificity of the interaction between κ-casein, αs-casein and β-casein which forms the basis of micelle stabilization was studied by investigating the extent to which κ-casein could be replaced by other proteins. Of those tested, only gelatin replaced κ-casein and even it was only 2·5% (w/v) as effective and required a long pre-incubation period. The micelles formed by each of κ-casein and gelatin with αs-casein and Ca2+ were of a similar size to the casein—Ca complexes which compose natural micelles. Gelatin also formed complexes with αs- and with β-casein at 30°C in the absence of CaCl2. Evidence was obtained that the interactions between gelatin and the caseins had a much stronger ionic component than had those between κ-casein and the other caseins. It was concluded that the interactions between κ-casein and αs- and β-caseins which lead to micelle formation are highly specific and probably involve definite sites in each molecule.

Type
Original Articles
Copyright
Copyright © Proprietors of Journal of Dairy Research 1971

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ackers, G. K. (1964). Biochemistry, Easton 3, 723.CrossRefGoogle Scholar
Alais, C. & Jollès, P. (1961). Biochim. biophys. Acta 51, 315.CrossRefGoogle Scholar
Andrews, P. (1970). Meth. biochem. Analysis 18, 1.CrossRefGoogle Scholar
Bernardi, G. & Cook, W. H. (1960). Biochim. biophys. Acta 44, 86.CrossRefGoogle Scholar
Bigelow, C. C. (1967). J. theor. Biol. 16, 187.CrossRefGoogle Scholar
Cheeseman, G. C. & Jeffcoat, J. (1970). J. Dairy Res. 37, 245.CrossRefGoogle Scholar
Crammer, J. L. & Neuberger, A. (1943). Biochem. J. 37, 302.CrossRefGoogle Scholar
Davis, C. E. & Oakes, E. T. (1922). J. Am. chem. Soc. 44, 464.CrossRefGoogle Scholar
Eastoe, J. E. (1955). Biochem. J. 61, 589.CrossRefGoogle Scholar
Evans, R. J., Bandemer, S. L., Heinlein, K. & Davidson, J. A. (1968). Biochemistry, Easton 7, 3095.CrossRefGoogle Scholar
Fiske, C. H. & Subbarrow, Y. (1925). J. biol. Chem. 66, 375.CrossRefGoogle Scholar
Green, M. L. (1969). J. Dairy Res. 36, 353.CrossRefGoogle Scholar
Green, M. L. (1971). J. Dairy Res. 38, 25.CrossRefGoogle Scholar
Hassid, W. Z. & Abraham, S. (1957). Meth. Enzym. 3, 35.Google Scholar
Hill, R. J. & Wake, R. G. (1969). Nature, Lond. 221, 635.CrossRefGoogle Scholar
Hughes, W. L. (1954). In The Proteins, 1st edn, 2B, 663. (Eds Neurath, H. and Bailey, K..) New York: Academic Press.CrossRefGoogle Scholar
Jollès, P. (1966). Angew. Chem. (int edn.), 5, 558.CrossRefGoogle Scholar
Kalan, E. B. & Woychik, J. H. (1965). J. Dairy Sci. 48, 1423.CrossRefGoogle Scholar
Kunitz, M. (1947). J. gen. Physiol. 30, 291.CrossRefGoogle Scholar
Layne, E. (1957). Meth. Enzym. 3, 451.Google Scholar
Luzzati, V., Witz, J. & Nicolaieff, A. (1961). J. molec. Biol. 3, 379.CrossRefGoogle Scholar
McAuley, A. & Hill, J. (1969). Q. Rev. chem. Soc. 23, 18.CrossRefGoogle Scholar
McKenzie, H. A. (1967). Adv. Protein Chem. 22, 56.Google Scholar
Morr, C. V. (1967). J. Dairy Sci. 50, 1744.CrossRefGoogle Scholar
Murphy, R. F., Downey, W. K. & Kearney, R. D. (1969). Biochem. J. 115, 22P.CrossRefGoogle Scholar
Noble, R. W. Jr & Waugh, D. F. (1965). J. Am. chem. Soc. 87, 2236.CrossRefGoogle Scholar
Noelken, M. E. (1966). J. Dairy Sci. 49, 706.Google Scholar
Payens, T. A. J. (1966). J. Dairy Sci. 49, 1317.CrossRefGoogle Scholar
Pepper, L. & Thompson, M. P. (1963). J. Dairy Sci. 46, 764.CrossRefGoogle Scholar
Phelps, R. A. & Putnam, F. W. (1960). In The Plasma Proteins, 1, 143. (Ed. Putnam, F. W..) New York: Academic Press.CrossRefGoogle Scholar
Ribadeau Dumas, B. (1968). Biochim. biophys. Acta 168, 274.CrossRefGoogle Scholar
Shulman, S. (1953). J. Am. chem. Soc. 75, 5846.CrossRefGoogle Scholar
Tristram, G. R. & Smith, R. H. (1963). Adv. Protein Chem. 18, 227.CrossRefGoogle Scholar
Warner, R. C. (1954). In The Proteins, 1st edn, 2A, 435. (Eds Neurath, H. and Bailey, K..) New York: Academic Press.CrossRefGoogle Scholar
Warren, L. (1959). J. biol. Chem. 234, 1971.CrossRefGoogle Scholar
Waugh, D. F. & Von hippel, P. H. (1956). J. Am. chem. Soc. 78, 4576.CrossRefGoogle Scholar
Woychik, J. H. & Wondolowski, M. V. (1967). J. Dairy Sci. 50, 949.Google Scholar
Zittle, C. A. (1961). J. Dairy Sci. 44, 2101.CrossRefGoogle Scholar
Zittle, C. A. (1964). J. Dairy Sci. 47, 672.Google Scholar
Zittle, C. A. & Walter, M. (1963). J. Dairy Sci. 46, 1189.CrossRefGoogle Scholar