Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-26T17:44:58.740Z Has data issue: false hasContentIssue false

Some aspects of the chemical composition of the milk fat globule membrane during lactation

Published online by Cambridge University Press:  01 June 2009

M. Anderson
Affiliation:
National Institute for Research in Dairying, Shinfield, Reading, RG2 9AT
G. C. Cheeseman
Affiliation:
National Institute for Research in Dairying, Shinfield, Reading, RG2 9AT

Summary

The protein, phospholipid and neutral lipid composition of a deoxycholatesoluble fraction (DOCM) from bovine milk fat globule membrane (FGM) was determined, at intervals during lactation, in 3 cows maintained at a constant level of food intake. It was suggested that the appearance of free fat in washed cream during the first 2 days post partum was related to membrane stability in colostral secretion. Differences between the cows in DOCM yield (mg/100 g cream lipid) and composition were greatest during the first 25 days post partum. DOCM yield increased markedly as lactation proceeded in one animal, and this was thought to be due to a decrease in globule size. Variation in DOCM composition was principally due to an alteration in neutral lipid content. There were few differences, however, between the quantities of phospholipid and protein in DOCM for all 3 animals, and similarly the percentage composition of the major DOCM phospholipids varied little, phosphatidyl choline being the predominant phospholipid.

Type
Original Articles
Copyright
Copyright © Proprietors of Journal of Dairy Research 1971

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Anderson, M. & Cheeseman, G. C. (1970). 18th Int. Dairy Congr., Sydney 1E, p. 72.Google Scholar
Avis, P. G., Bergel, F. & Bray, R. C. (1955). J. chem. Soc. p. 1100.Google Scholar
Brunner, J. R. (1965a). In Fundamentals of Dairy Chemistry, p. 446. (Eds Webb, B. H. and Johnson, A. H..) Westport, Conn.: Avi Publishing Co.Google Scholar
Brunner, J. R. (1965b). In Fundamentals of Dairy Chemistry, p. 408.Google Scholar
Cheeseman, G. C. & Mabbitt, L. A. (1968). J. Dairy Res. 35, 135.CrossRefGoogle Scholar
Chen, P. S. JR, Toribara, T. Y. & Warner, H. (1956). Analyt. Chem. 28, 1756.CrossRefGoogle Scholar
Chien, H. C. & Richardson, T. (1967). J. Dairy Sci. 50, 451.CrossRefGoogle Scholar
Folch, J., Lees, M. & Sloane stanley, G. H. (1957). J. biol. Chem. 226, 497.CrossRefGoogle Scholar
Garrett, O. F. & Overman, O. R. (1940). J. Dairy Sci. 23, 13.CrossRefGoogle Scholar
Hayashi, S., Erickson, D. R. & Smith, L. M. (1965). Biochemistry, Easton 4, 2557.CrossRefGoogle Scholar
Hayashi, S. & Smith, L. M. (1965). Biochemistry, Easton 4, 2550.CrossRefGoogle Scholar
Huang, T. C. & Kuksis, A. (1967). Lipids 2, 453.CrossRefGoogle ScholarPubMed
Kayser, S. G. & Patton, S. (1970). Biochem. biophys. Res. Commun. 41, 1572.CrossRefGoogle Scholar
Kernohan, E. A. & Lepherd, E. E. (1969). J. Dairy Res. 36, 177.CrossRefGoogle Scholar
Lang, C. A. (1958). Analyt. Chem. 30, 1692.CrossRefGoogle Scholar
Mabbitt, L. A. & Cheeseman, G. C. (1967). J. Dairy Res. 34, 73.CrossRefGoogle Scholar
Parrish, D. B., Wise, G. H., Hughes, J. S. & Atkeson, F. W. (1950). J. Dairy Sci. 33, 457.CrossRefGoogle Scholar
Prentice, J. H. (1969). Dairy Sci. Abstr. 31, 353.Google Scholar
Storry, J. E. (1970). J. Dairy Res. 37, 139.CrossRefGoogle Scholar
Swope, F. C. & Brunner, J. R. (1968). Milchwissenschaft 23, 470.Google Scholar
Swope, F. C. & Brunner, J. R. (1970). J. Dairy Sci. 53, 691.CrossRefGoogle Scholar
Vasic, J. & Deman, J. M. (1964). J. Dairy Sci. 47, 665.Google Scholar