Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-08T08:54:50.325Z Has data issue: false hasContentIssue false

Proteinase, peptidase and esterase activities of cell-free extracts from wild strains of Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus salivarius subsp. thermophilus isolated from traditional Greek yogurt

Published online by Cambridge University Press:  01 June 2009

Georgios Kalantzopoulos
Affiliation:
Laboratory of Dairy Technology, Agricultural University of Athens, Botanikos, 118 55 Athens, Greece
Efthimia Tsakalidou
Affiliation:
Laboratory of Dairy Technology, Agricultural University of Athens, Botanikos, 118 55 Athens, Greece
Eugenia Manolopoulou
Affiliation:
Laboratory of Dairy Technology, Agricultural University of Athens, Botanikos, 118 55 Athens, Greece

Summary

Proteinase, peptidase and esterase activities were detected in cell-free extracts of four Lactobacillus delbrueckii subsp. bulgaricus and four Streptococcus salivarius subsp. thermophilus strains. Post-electrophoretic detection was based on hydrolysis of L-leucine-βnaphthylamide and α-naphthylacetate. The substrates L-leucine-p–nitroanilide, N-acetyl-L-alanine-p–nitroanilide, 2-nitrophenylbutyrate and 4-nitrophenylbutyrate were used for the spectrophotometric detection of the enzymes. Estimation of total proteolytic activity was based on hydrolysis of bovine whole casein. Interesting differences were observed between the two French strains and those isolated from traditional Greek yogurt.

Type
Original Articles
Copyright
Copyright © Proprietors of Journal of Dairy Research 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Argyle, P. J., Mathison, G. E. & Chandan, R. C. 1976 Production of cell-bound proteinase by Lactobacillus bulgaricus and its location in the bacterial cell. Journal of Applied Bacteriology 41 175184CrossRefGoogle ScholarPubMed
Baer, A. 1987 [Immunological differentiation and immunology of some lactobacilli.] Schweizerische Milchwirtschaftliche Forschung 16 8488Google Scholar
Bottazzi, V. 1987 Aggiornamento di microbiologie dei batteri lattacci, p. 82. Milan, Italy: Centro Sperimentale LatteGoogle Scholar
Brandl, E. & Zizer, T. 1973 [Hydrolysis of aromatic esters by microbial preparations with lipolytic and proteolytic activity.] Österreichische, Milchwirtschaft 28 (Wissenschaftliche Beilage) 1524Google Scholar
Cooper, G. C. 1981 Elektrophorese. Biochemische Arbeitsmethoden, p. 179. Berlin: de GruyterCrossRefGoogle Scholar
Desmazeaud, M. J. 1974 [Properties and specificity of an intracellular neutral endopeptidase from Streptococcus thermophilus.] Biochimie 56 11731181CrossRefGoogle ScholarPubMed
Desmazeaud, M. J. & Juge, M. 1976 [Characterization of the proteolytic activity and fractionation of the dipeptidases and aminopeptidases from Streptococcus thermophilus.] Lait 56 241260CrossRefGoogle Scholar
El Soda, M., Abd-El-Wahab, H., Ezzat, N., Desmazeaud, M. J. & Ismail, A. 1986 a The esterolytic and lipolytic activities of the Lactobacilli. II. Detection of the esterase system of Lactobacillus helveticus, L. bulgaricus, L. lactis and L. acidophilus. Lait 66 431443CrossRefGoogle Scholar
El Soda, M. & Desmazeaud, M. J. 1981 General properties of a new ribosomal aryl-peptidyl amidase in Lactobacillus casei. Agricultural and Biological Chemistry 45 16931700Google Scholar
El Soda, M. & Desmazeaud, M. J. 1982 [Peptide hydrolases from lactobacilli of the Thermobacterium group. I. Determination in Lactobacillus helveticus, L. acidophilus, L. lactis and L. bulgaricus.] Canadian Journal of Microbiology 28 11811188CrossRefGoogle Scholar
El Soda, M., Fathallah, S., Ezzat, N., Desmazeaud, M. J. & Abou Donia, S. 1986 b The esterolytic and lipolytic activities of Lactobacilli. Detection of the esterase systems of L. casei, L. plantarum, L. brevis and L. fermentum. Sciences des Aliments 6 545557Google Scholar
Exterkate, F. A. 1975 An introductory study of the proteolytic system of the Streptococcus cremoris strain HP. Netherlands Milk and Dairy Journal 29 303318Google Scholar
Ezzat, N., El Soda, M., Bouillanne, C., Zevaco, C. & Blanchard, P. 1985 Cell wall associated proteinases in Lactobacillus helveticus, Lactobacillus bulgaricus and Lactobacillus lactis. Milchwissenschaft 40 140143Google Scholar
Frey, J. P., Marth, E. H., Johnson, M. E. & Olson, N. F. 1986 Peptidases and proteases of lactobacilli associated with cheese. Milchwissenschaft 41 622624Google Scholar
Geis, A., Bockelmann, W. & Teuber, M. 1985 Simultaneous extraction and purification of a cell wall-associated peptidase and β-casein specific protease from Streptococcus cremoris ACI. Applied Microbiology and Biotechnology 23 7984CrossRefGoogle Scholar
Harper, W. J., Carmona De Catril, A. & Chen, J. L. 1980 Esterases of lactic streptococci and their stability in cheese slurry systems. Milchwissenschaft 35 129132Google Scholar
Jarvis, A. W. & Wolff, J. M. 1979 Grouping of lactic streptococci by gel electrophoresis of soluble cell extracts. Applied and Environmental Microbiology 37 391398CrossRefGoogle ScholarPubMed
Kamaly, K. M. & Marth, E. H. 1988 Proteinase and peptidase activities of cell-free extracts from mutant strains of lactic streptococci. Journal of Dairy Science 71 23492357CrossRefGoogle Scholar
Kaminogawa, S., Ninomiya, T. & Yamauchi, K. 1984 Aminopeptidase profiles of lactic streptococci. Journal of Dairy Science 67 24832492CrossRefGoogle Scholar
Kersters, K. & De Ley, J. 1975 Identification and grouping of bacteria by numerical analysis of their electrophoretic protein patterns. Journal of General Microbiology 87 333342CrossRefGoogle ScholarPubMed
Laemmli, U. K. 1970 Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227 680685CrossRefGoogle ScholarPubMed
Lowry, O. H., Rosebrough, N. J., Farr, A. L. & Randall, R. J. 1951 Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry 193 265275CrossRefGoogle ScholarPubMed
Miller, C. G. & Mackinnon, K. 1974 Peptidase mutants of Salmonella typhimurium. Journal of Bacteriology 120 355363CrossRefGoogle ScholarPubMed
Moore, S. & Stein, W. H. 1954 A modified ninhydrin reagent for the photometric determination of amino acids and related compounds. Journal of Biological Chemistry 211 907913CrossRefGoogle ScholarPubMed
Piatkiewicz, A. 1987 Lipase and esterase formation by mutants of lactic acid streptococci and lactobacilli. Milchwissenschaft 42 561564Google Scholar
Rabier, D. & Desmazeaud, M. J. 1973 [Inventory of intracellular peptidase activities of Streptococcus thermophilus. Purification and properties of a dipeptide hydrolase and an aminopeptidase.] Biochimie 55 389404CrossRefGoogle Scholar
Tamime, A. Y. & Robinson, R. K. 1985 Yoghurt: science and technology, p. 317. Oxford: Pergamon PressGoogle Scholar
Thomas, T. D. & Mills, O. E. 1981 Proteolytic enzymes of starter bacteria. Netherlands Milk and Dairy Journal 35 255273Google Scholar
Thomas, T. D. & Pritchard, G. G. 1987 Proteolytic enzymes of dairy starter cultures. FEMS Microbiology Reviews 46 245268CrossRefGoogle Scholar