Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-23T05:39:09.025Z Has data issue: false hasContentIssue false

Physical characteristics of the bovine teat canal and their influence on susceptibility to streptococcal infection

Published online by Cambridge University Press:  01 June 2009

S. Jane Lacy-Hulbert
Affiliation:
Institute for Animal Health, Compton Laboratory, Compton, Newbury RG16 0NN, UK
J. Eric Hillerton
Affiliation:
Institute for Animal Health, Compton Laboratory, Compton, Newbury RG16 0NN, UK

Summary

Physical characteristics of the bovine teat canal were examined for their influence on susceptibility to intramammary infection. All quarters of 18 cows were inoculated with 2 × 105 cfu Streptococcus agalactiae (Trial 1) and 20 cows with 105 cfu Str. Uberis (Trial 2) 3–4 mm into the teat canal every 3 d for 12 d. Incidence of quarter infection was similar for both pathogens, 30/72 (42%) in Trial 1 and 32/80 (40%) in Trial 2. Logistic regression analysis showed that probability of infection by Str. Agalactiae increased significantly with an increase in quarter peak flow rate (P < 0·05) whereas probability of infection increased for Str. Uberis with a decrease in teat canal length (P < 0·05). A significantly higher (P < 0·001) incidence of infection by Str. Uberis was observed in quarters that contained a low wet weight (< 1·8 mg) of removable keratin compared with those that contained > 1·8 mg keratin, but there was no correlation between weight of keratin and length of the teat canal. Infections by Str. Uberis took significantly less (P < 0·05) time to show a rise in somatic cell count above 7·5 × 105 cells/ml than Str. agalactiae. The results provide evidence that these pathogens use different mechanisms to pass through the teat canal.

Type
Original Articles
Copyright
Copyright © Proprietors of Journal of Dairy Research 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Adams, E. W. & Rickard, C. G. 1963 The antistreptococcic activity of bovine teat canal keratin. American Journal of Veterinary Research 24 122135Google ScholarPubMed
Baxter, E. S., Clarke, P. M., Dodd, F. H. & Foot, A. S. 1950 Factors affecting the rate of machine milking. Journal of Dairy Research 17 117127CrossRefGoogle Scholar
Bramley, A. J. 1984 Streptococcic uberis udder infection – a major barrier to reducing mastitis incidence. British Veterinary Journal 140 328335CrossRefGoogle Scholar
Bramley, A. J. & Higgs, T. M. 1974 Growth of bacteria through the streak canal of unmilked cows. international Dairy Congress 19 New Delhi, 1E p. 134Google Scholar
Bramley, A. J. & Hogben, E. M. 1982 The adhesion of human and bovine isolates of Streptococcus agalactiae (group B) to bovine mammary gland epithelial cells. Journal of Comparative Pathology 92 131137CrossRefGoogle Scholar
Bramley, A. J., King, J. S., Higgs, T. M. & Neave, F. K. 1979 Colonization of the bovine teat duct following inoculation with Staphylococcus aureus and Escherichia coli. British Veterinary Journal 135 149162CrossRefGoogle ScholarPubMed
Bright, S. A., Bitman, J., Capuco, A. V., Wood, D. L. & Miller, R. H. 1990 Methods of collection and lipid composition of teat canal keratin in dry and lactating cows. Journal of Dairy Science 73 98106CrossRefGoogle ScholarPubMed
Butler, M. C., Allen, C. J. & Hillerton, J. E. 1990 Methods of measuring and calculating milking performance of cows. Journal of Agricultural Engineering Research 46 245257CrossRefGoogle Scholar
Capuco, A. V., Bright, S. A., Pankey, J. W., Wood, D. L., Miller, R. H. & Bitman, J. 1992 Increased susceptibility to intramammary infection following removal of teat canal keratin. Journal of Dairy Science 75 21262130CrossRefGoogle ScholarPubMed
Chandler, R. L., Lepper, A. W. D. & Wilcox, J. 1969 Ultrastructural observations on the bovine teat duct. Journal of Comparative Pathology 79 315319CrossRefGoogle ScholarPubMed
Collins, R. A., Parsons, K. R. & Bland, A. P. 1986 Antibody-containing cells and specialised epithelial cells in the bovine teat. Research in Veterinary Science 41 5055CrossRefGoogle ScholarPubMed
Collins, R. A., Parsons, K. R., Field, T. R. & Bramley, A. J. 1988 Histochemical localization and possible antibacterial role of xanthine oxidase in the bovine mammary gland. Journal of Dairy Research 55 2532CrossRefGoogle ScholarPubMed
Cousins, C. L., Higgs, T. M., Jackson, E. R., Neave, F. K. & Dodd, F. H. 1980 Susceptibility of the bovine udder to bacterial infection in the dry period. Journal of Dairy Research 47 1118CrossRefGoogle ScholarPubMed
Craven, N. 1985 Do rising fat-globules assist microbial invasion via the teat duct between milkings? Kieler Milchwirtschaflliche Forschungsberichte 37 554558Google Scholar
Dodd, F. H. & Neave, F. K. 1951 Machine milking rate and mastitis. Journal of Dairy Research 18 240245CrossRefGoogle Scholar
Du Preez, J. H. 1985 Teat canal infections. Kieler Milchwirtschaflliche Forschungsberichte 37 267273Google Scholar
Grega, T. & Szarek, J. 1985 Relationship of teat canal size to milkability and udder health in three breeds. Zeszyty Naukowe Akademii Rolniczej w Krakowie no. 191 Zootechnika 23 311Google Scholar
Grindal, R. J. & Hillerton, J. E. 1991 Influence of milk flow rate on new intramammary infection in dairy cows. Journal of Dairy Research 58 263268CrossRefGoogle ScholarPubMed
Grindal, R. J., Walton, A. W. & Hillerton, J. E. 1991 Influence of milk flow rate and streak canal length on new intramammary infection in dairy cows. Journal of Dairy Research 58 383388CrossRefGoogle ScholarPubMed
Hibbitt, K. G., Cole, C. B. & Reiter, B. 1969 Antimicrobial proteins isolated from the teat canal of the cow. Journal of General Microbiology 56 365371CrossRefGoogle ScholarPubMed
Hill, A. W. 1988 Pathogenicity of two strains of Streptococcus uberis infused into lactating and nonlactating bovine mammary glands. Research in Veterinary Science 45 400404CrossRefGoogle ScholarPubMed
Hogan, J. S., Pankey, J. W. & Duthie, A. H. 1987 Growth inhibition of mastitis pathogens by long-chain fatty acids. Journal of Dairy Science 70 927934CrossRefGoogle ScholarPubMed
Hogan, J. S., Smith, K. L., Todhunter, D. A. & Schoenberger, P. S. 1988 Growth responses of environmental mastitis pathogens to long-chain fatty acids. Journal of Dairy Science 71 245249CrossRefGoogle ScholarPubMed
International Dairy Federation 1981 Laboratory methods for use in mastitis work. Brussels: IDF (International Dairy Federation Bulletin no. 132)Google Scholar
Johnston, T. 1938 Anatomical and experimental study of the teat of the cow with particular reference to streptococcal mastitis. Journal of Comparative Pathology and Therapeutics 51 6977CrossRefGoogle Scholar
Leigh, J. A., Field, T. R. & Williams, M. R. 1990 Two strains of Streptococcus uberis, of differing ability to cause clinical mastitis, differ in their ability to resist some host defence factors. Research in Veterinary Science 49 8587CrossRefGoogle ScholarPubMed
McDonald, J. S. 1971 Microscopic observations of teat canals from susceptible and resistant bovine mammary glands: a preliminary report. Proceedings of the VIth International Conference on Cattle Diseases, pp. 97103Google Scholar
McDonald, J. S. 1975 a Radiographic method for anatomic study of the teat canal: changes between milking periods. American Journal of Veterinary Research 36 1241–42Google ScholarPubMed
Mcdonald, J. S. 1975 b Radiographic method for anatomic study of the teat canal: characteristics related to resistance to new intramammary infection during lactation and the early dry period. Cornell Veterinarian 65 492499Google ScholarPubMed
Mackie, D. P., Pollock, D. A., Meneely, D. J. & Logan, E. F. 1983 Clinical features of consecutive intramammary infections with Streptococcus agalactiae in vaccinated and non-vaccinated heifers. Veterinary Record 112 472476CrossRefGoogle ScholarPubMed
Mamo, W., Fröman, G. & Wadström, T. 1986 Bacterial adhesion as a virulence factor in bovine mastitis: possible role of cell surface hydrophobicity, capsule, fibronectin, fibrinogen and collagen binding. Proceedings of the Symposium on Mastitis Control and Hygienic Production of Milk, Espoo, Finland, pp. 7787 (Ed. Sandholm, M.)Google Scholar
Murdough, P. A., Martus, N. S., Mazzola, G. J., Salamun, D. M., Scudder, P. J., Urbano, M. A. & Pankey, J. W. 1991 In vitro growth studies of mastitis pathogens on teat canal keratin. Journal of Dairy Science 74 (Suppl. 1) 204 Abstr. P186Google Scholar
Murphy, J. M. 1959 The effect of certain mild stresses to the bovine teat canal on infection with Streptococcus agalactiae. Cornell Veterinarian 49 411421Google Scholar
Murphy, J. M. & Stuart, O. M. 1953 Some results of the application of Streptococcus agalactiae (Cornell 48 strain) to the bovine teat canal by means of the Hadley-Wisconsin swab technique. Cornell Veterinarian 43 465480Google Scholar
Murphy, J. M. & Stuart, O. M. 1955 Teat canal length in the bovine and its relation to susceptibility to swab-induced infection with Streptococcus agalactiae. Cornell Veterinarian 45 112122Google ScholarPubMed
Newbould, F. H. S. & Neave, F. K. 1965 The effect of inoculating the bovine teat duct with small numbers of Staphylococcus aureus. Journal of Dairy Research 32 171179CrossRefGoogle Scholar
Prasad, L. B. M. & Newbould, F. H. S. 1968 Inoculation of the bovine teat duct with Staphylococcus aureus: the relationship of teat duct length, milk yield and milking rate to development of intramammary infection. Canadian Veterinary Journal 9 (5) 107115Google ScholarPubMed
Scott, N. R., Galton, D. M., Aneshansley, D. J., Lissik, E. A., Gates, R. S., Mahan, S. T. & Zehr, P. D. 1987 Mechanisms of transfer of organisms through the teat canal. Proceedings of the International Mastitis Symposium, Canada, pp. 6678Google Scholar
Williams, D. M. & Mein, G. A. 1985 The role of machine milking in the invasion of mastitis organisms and implications for maintaining low infection rates. Kieler Milchwirtschaftliche Forschungsberichte 37 415425Google Scholar