Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-26T20:12:29.727Z Has data issue: false hasContentIssue false

Pediococci in Cheddar cheese

Published online by Cambridge University Press:  01 June 2009

T. F. Fryer
Affiliation:
National Institute for Research in Dairying, Shinfield, Reading
M. Elisabeth Sharpe
Affiliation:
National Institute for Research in Dairying, Shinfield, Reading

Summary

Fifty-nine strains of pediococci were isolated as representing the predominant non-starter flora in a series of Cheddar cheeses made over a period of 5 months. All strains had the same physiological characteristics and were identified as Pediococcus cerevisiae. A common antigen was found in 54 of the strains, whereas in the other 5 the antigenic component appeared to be related but not the same. Both antigens were located in the cell wall.

All the strains required folinic acid for growth and it was shown with one strain that the small amount of growth which occurred in sterile milk was greatly increased by the presence of the folinic acid producing starter Streptococcus cremoris 924.

Type
Original Articles
Copyright
Copyright © Proprietors of Journal of Dairy Research 1966

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Coster, E. & White, H. R. (1964). J. gen. Microbiol. 37, 15.CrossRefGoogle Scholar
Dacre, J. C. (1958). J. Dairy Res. 25, 414.CrossRefGoogle Scholar
Deibel, R. H. & Evans, J. B. (1960). J. Bact. 79, 356.CrossRefGoogle Scholar
de Man, J. C., Rogosa, M. & Sharpe, M. E. (1960). J. appl. Bact. 23, 130.CrossRefGoogle Scholar
Dighton, C. & Bond, T. J. (1960). Biochim. biophys. Res. Commun. 2, 272.CrossRefGoogle Scholar
Eigen, E. & Shockman, G. D. (1963). Analytical Microbiol. pp. 467–8. (Ed. Kavanagh, .) New York: Academic Press.Google Scholar
Elliott, S. D. (1960). J. exp. Med. 111, 621.CrossRefGoogle Scholar
Felton, E. A. & Niven, C. F. Jr. (1953). J. Bact. 65, 482.CrossRefGoogle Scholar
Franklin, J. G. & Sharpe, M. E. (1963). J. Dairy Res. 30, 87.CrossRefGoogle Scholar
Gunther, H. L. & White, H. R. (1961) J. gen. Microbiol. 26, 185.CrossRefGoogle Scholar
Gunther, H. L. & White, H. R. (1962). Int. Bull. bact. Nomen. Taxon. 12, 185.Google Scholar
Hendlin, D., Koditschek, L. K. & Soars, M. H. (1953). J. Bact. 65, 466.CrossRefGoogle Scholar
Jones, D. & Shattock, P. M. F. (1960). J. gen. Microbiol. 23, 335.CrossRefGoogle Scholar
Lancefield, R. C. (1933). J. exp. Med. 57, 571.CrossRefGoogle Scholar
Mabbitt, L. A. & Zielinska, M. (1956). J. appl. Bact. 19, 95.CrossRefGoogle Scholar
Mansi, W. (1958). Nature, Lond. 181, 1289.Google Scholar
Mitbander, V. B. & Sreenivasan, A. (1954). Arch. Mikrobiol. 21, 60.CrossRefGoogle Scholar
Møller-Madsen, A. & Jensen, H. (1962). 16th Int. Dairy Congr. B, 238.Google Scholar
Perry, K. D. & Sharpe, M. E. (1960). J. Dairy Res. 27, 267.CrossRefGoogle Scholar
Reiter, B. & Møller-Madsen, A. (1963). J. Dairy Res. 30, 419.CrossRefGoogle Scholar
Reiter, B. & Oram, J. D. (1962). J. Dairy Res. 29, 63.Google Scholar
Rogosa, M., Mitchell, J. A. & Wiseman, R. F. (1951). J. dent. Res. 30, 682.CrossRefGoogle Scholar
Salton, M. R. J. & Horne, R. W. (1951). Biochim. biophys. Acta 7, 177.CrossRefGoogle Scholar
Sauberlich, H. E. & Baumann, C. A. (1948). J. biol. Chem. 176, 165.CrossRefGoogle Scholar
Shahani, K. M., Hathaway, I. L. & Kelly, P. L. (1962). J. Dairy Sci. 45, 833.CrossRefGoogle Scholar
Sharpe, M. E. (1955). J. gen. Microbiol. 12, 107.CrossRefGoogle Scholar
Sharpe, M. E. (1964). J. gen. Microbiol. 36, 151.CrossRefGoogle Scholar
Sharpe, M. E., Davison, A. L. & Baddiley, J. (1964). J. gen. Microbiol. 34, 333.CrossRefGoogle Scholar
Zygmunt, W. A., Haley, E. E., Sarett, H. P., Conrad, H. E., Tavormina, P. A. & Staveley, H. E. (1962). Can. J. Microbiol. 8, 429.CrossRefGoogle Scholar