Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-22T13:12:08.559Z Has data issue: false hasContentIssue false

Partition of casein between polymer phases

Published online by Cambridge University Press:  01 June 2009

N. J. Berridge
Affiliation:
National Institute for Research in Dairying, Shinfield, Reading
D. L. Suett
Affiliation:
National Institute for Research in Dairying, Shinfield, Reading

Summary

Casein derived from the micelles of milk by removing the calcium has been subjected to partition and counter current distribution between phases containing polyethylene glycol and dextran. The results show that at least 2 kinds of casein complex exist which differ in structure, in size or in both. There are also differences in composition with respect to minor components, though both types contain predominantly α- and β-casein.

Type
Original Articles
Copyright
Copyright © Proprietors of Journal of Dairy Research 1966

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Albertsson, P. (1960). Partition of Cell Particles and Macromolecules. New York: John Wiley and Sons; Stockholm: Almqvist and Wiksell.Google Scholar
Brønsted, J. N. (1931). Z. phys. Chem. A (Bodenstein-Festband), p. 257.Google Scholar
Bush, M. T. & Densen, P. M. (1948). Analyt. Chem. 20, 121.CrossRefGoogle Scholar
Herskovits, T. T. (1965). J. biol. Chem. 240, 628.CrossRefGoogle Scholar
Hipp, N. J., Groves, M. L., Custer, J. H. & McMeekin, T. L. (1952). J. Dairy Sci. 35, 272.CrossRefGoogle Scholar
McGann, T. C. A. & Pyne, G. T. (1960). J. Dairy Res. 27, 403.CrossRefGoogle Scholar
Nitschman, Hs. & Zürcher, H. (1950). Helv. chim. Acta 33, 1698.CrossRefGoogle Scholar
Noble, R. W. Jr. & Waugh, D. F. (1965). J. Am. chem. Soc. 87, 2236.CrossRefGoogle Scholar
Payens, T. A. J. & Markwijk, B. W. van (1963). Biochim. biophys. Acta 71, 517.CrossRefGoogle Scholar
Raymond, S. & Wang, Y.-J. (1960). Analyt. Biochem. 1, 391.CrossRefGoogle Scholar
Shimmin, P. D. & Hill, R. D. (1964). J. Dairy Res. 31, 121.CrossRefGoogle Scholar
Signer, R. (1953). Z. Angew. Chem. 65, 349.Google Scholar
Sullivan, R. A., Fitzpatrick, M. M. & Stanton, E. K. (1959). Nature, Lond. 183, 616.Google Scholar
Von Hippel, P. H. & Waugh, D. F. (1955). J. Am. chem. Soc. 77, 4311.CrossRefGoogle Scholar
Walter, J. (1952). Dissertation, Bern (Switzerland).Google Scholar
Warner, R. C. (1944). J. Am. chem. Soc. 66, 1725.CrossRefGoogle Scholar
Waugh, D. F. (1961). J. phys. Chem., Ithaca 65, 1793.Google Scholar
Waugh, D. F. & Noble, R. W. jr. (1965). J. Am. chem. Soc. 87, 2246.CrossRefGoogle Scholar
Waugh, D. F. & Hippel, P. H. von (1956). J. Am. chem. Soc. 78, 4576.CrossRefGoogle Scholar
Woychik, J. H. (1964). Biochem. biophys. Res. Commun. 16, 267.CrossRefGoogle Scholar
Zittle, C. A. (1962). J. Dairy Sci. 45, 650.Google Scholar