Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-23T06:35:44.256Z Has data issue: false hasContentIssue false

Oxygen concentration in milk of healthy and mastitic cows and implications of low oxygen tension for the killing of Staphylococcus aureus by bovine neutrophils

Published online by Cambridge University Press:  01 June 2009

Susan J. Mayer
Affiliation:
Departments of Veterinary Medicine, Langford, Bristol BS18 7DU, UK
Avril E. Waterman
Affiliation:
Departments of Veterinary Surgery, Langford, Bristol BS18 7DU, UK
Peter M. Keen
Affiliation:
Departments of Pharmacology, University of Bristol Veterinary School, Langford, Bristol BS18 7DU, UK
Neil Craven
Affiliation:
Monsanto plc, Basingstoke, Hants, UK
F. John Bourne
Affiliation:
Departments of Veterinary Medicine, Langford, Bristol BS18 7DU, UK

Summary

The partial pressure of O2 in milk from normal cows and from cows with mastitis was measured and the concentrations of O2 calculated. Oxygen levels of milk from normal cows were similar to those in venous plasma, but inflammation of the mammary gland led to a dramatic drop in O2 concentration to < 10% of control values. Intracellular survival of Staphylococcus aureus strain M60 in bovine neutrophils was greater under anaerobic than aerobic conditions. The implications of low O2 concentrations in milk from infected mammary glands for the bactericidal activity of bovine neutrophils is discussed.

Type
Original articles
Copyright
Copyright © Proprietors of Journal of Dairy Research 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Anderson, J. C. 1982 Progressive pathology of staphylococcal mastitis with a note on control, immunisation and therapy. Veterinary Record 110 372376CrossRefGoogle ScholarPubMed
Carlson, G. P. & Kaneko, J. J. 1973 Isolation of leukocytes from bovine peripheral blood. Proceedings of the Society for Experimental Biology and Medicine 142 853856CrossRefGoogle ScholarPubMed
Carnfelt, C. & Lundberg, C. 1977 Purulent and non-purulent maxillary sinus secretions with respect to PO2, PCO2 and pH. Acta Otolaryngologica 84 138144CrossRefGoogle Scholar
Cross, A. R., Higson, F. K., Jones, O. T. G., Harper, A. M. & Segal, A. W. 1982 The enzymic reduction and kinetics of oxidation of cytochrome b−245 of neutrophils. Biochemical Journal 204 479485CrossRefGoogle ScholarPubMed
Cross, B. A. & Silver, I. A. 1961 Mammary oxygen tension and the milk-ejection mechanism. Journal of Endocrinology 22 xxxiiGoogle Scholar
Edwards, S. W., Hallett, M. B. & Campbell, A. K. 1984 Oxygen-radical production during inflammation may be limited by oxygen concentration. Biochemical Journal 217 851854CrossRefGoogle ScholarPubMed
Ellis, J. A., Mayer, S. J. & Jones, O. T. G. 1988 The effect of the NADPH oxidase inhibitor diphenyleneiodonium on aerobic and anaerobic microbicidal activities of human neutrophils. Biochemical Journal 251 887891CrossRefGoogle ScholarPubMed
Ford, J. E. 1967 The influence of the dissolved oxygen in milk on the stability of some vitamins towards heating and during subsequent exposure to sunlight. Journal of Dairy Research 34 239247CrossRefGoogle Scholar
Gates, J. B., Botta, J. A. & Teer, P. A. 1971 Blood gas and pH determinations in cattle anaesthetized with halothane. Journal of the American Veterinary Medical Association 158 16781682Google ScholarPubMed
Gudding, R., McDonald, J. S. & Cheville, N. F. 1984 Pathogenesis of Staphylococcus aureus mastitis: Bacteriologic, histologic, and ultrastructural pathologic findings. American Journal of Veterinary Research 45 25252531Google ScholarPubMed
Hays, R. C. & Mandell, G. L. 1974 PO2, pH and redox potentional of experimental abscesses. Proceedings of the Society for Experimental Biology and Medicine 147 2930CrossRefGoogle Scholar
Hill, D. W. 1976 Physics applied to anaesthesia, 3rd edn.London: ButterworthsGoogle Scholar
Jussila, E., Niinikoski, J. & Inberg, M. V. 1978 Oxygen and carbon dioxide tensions in the gastrocnemius muscles of patients with lower limb arterial ischaemia. In Oxygen Transport to Tissue – III (3rd International Symposium, 1977) pp. 623628 (Eds Silver, I. A., Erecińska, M. and Bicher, H. I.). New York: Plenum Press (Advances in Experimental Medicine and Biology 94)CrossRefGoogle Scholar
Linzell, J. L. & Peaker, M. 1975 The distribution and movements of carbon dioxide, carbonic acid and bicarbonate between blood and milk in the goat. Journal of Physiology 244 771782CrossRefGoogle ScholarPubMed
Mandell, G. L. 1974 Bactericidal activity of aerobic and anaerobic polymorphonuclear neutrophils. Infection and Immunity 9 337341CrossRefGoogle ScholarPubMed
Marshall, V. M. E., Cole, W. M. & Bramley, A. J. 1986 Influence of the lactoperoxidase system on susceptibility of the udder to Streptococcus uberis infection. Journal of Dairy Research 53 507514CrossRefGoogle ScholarPubMed
Mayer, S. J., Craven, N., Keen, P. M. & Bourne, F. J. 1988 a Effect of pH changes on the killing of Staphylococcus aureus and other mastitis pathogens by bovine neutrophil granule extracts. Research in Veterinary Science 44 324328CrossRefGoogle ScholarPubMed
Mayer, S. J., Keen, P. M. & Bourne, F. J. 1988 b Phagolysosomal pH in bovine and human neutrophils. European Journal of Clinical Investigation 18 A40Google Scholar
Miles, A. A. & Misra, S. S. 1938 The estimation of the bactericidal power of the blood. Journal of Hygiene 38 732749.Google ScholarPubMed
Niemimen, S., Fraki, J., Niinikoski, J., Iseberg, U. & Halkola, L. 1977 Acute effects of burn injury on tissue gas tensions in the rabbit. Scandinavian Journal of Plastic and Reconstructional Surgery 11 6974CrossRefGoogle Scholar
Norton, J. M. & Rand, P. W. 1974 Chronically implanted tissue electrodes in rabbits. Journal of Applied Physiology 36 118122CrossRefGoogle ScholarPubMed
Nunn, J. F. 1977 Applied Respiratory Physiology, 2nd Ed.London: ButterworthsGoogle Scholar
Paape, M. J., Wergin, W. P., Guidry, A. J. & Schultze, W. D. 1981 Phagocytic defence of the ruminant mammary gland. In The Ruminant Immune System pp. 555578 (Ed. Butter, J. E.). New York: Plenum Press (Advances in Experimental Medicine and Biology 137)Google Scholar
Root, R. K. & Cohen, M. S. 1981 The microbial mechanisms of human neutrophils and eosinophils. Reviews of Infectious Diseases 3 565598CrossRefGoogle Scholar
Schalm, O. W., Lasmanis, J. & Carroll, E. J. 1964 Effects of pre-existing leukocytosis on experimental coliform (Aerobacter aerogenes) mastitis in cattle. American Journal of Veterinary Research 25 8389Google ScholarPubMed
Schalm, O. W., Lasmanis, J. & Carroll, E. J. 1966 Significance of leukocytic infiltration into the milk in experimental Streptococcus agalactiae mastitis in cattle. American Journal of Veterinary Research 27 15371546Google ScholarPubMed
Segal, A. W., Geisow, M., Garcia, R., Harper, A. & Miller, R. 1981 The respiratory burst of phagocytic cells is associated with a rise in vacuolar pH. Nature 290 406409CrossRefGoogle ScholarPubMed
Silver, I. A. 1977 Tissue PO2 changes in acute inflammation. Advances in Experimental Medicine and Biology 94 769774CrossRefGoogle ScholarPubMed
Singh, J., Prasad, B., Mirakhur, K. K. & Kohli, R. N. 1981 Oxygen environment and acid-base status of the jugular, portal and renal veins and brain sinus of bovines in the conscious and sedated states. Zentralblatt für Veterinärmedicin 28A 559568CrossRefGoogle Scholar
Williams, M. R., Craven, N., Field, T. R. & Bunch, K. J. 1985 The relationship between phagocytosis and intracellular killing of Staphylococcus aureus by bovine neutrophils. British Veterinary Journal 141 362371CrossRefGoogle ScholarPubMed