Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-25T17:01:06.592Z Has data issue: false hasContentIssue false

The oxidation of lipids by components of bovine milk-fat globule membrane

Published online by Cambridge University Press:  01 June 2009

J. C. Allen
Affiliation:
Department of Biochemistry, The Medical College of St Bartholomew's Hospital, London
Catherine Humphries
Affiliation:
Department of Biochemistry, The Medical College of St Bartholomew's Hospital, London

Summary

Bovine milk-fat globule membrane was solubilized with a zwitterionic surfactant and subjected to chromatography on agarose, with the surfactant in the eluant. Fractions were tested for their effects on the oxidation of buffered linoleate. The maximum oxidative capability was greatly enhanced by the addition of Cu, and became associated with the phospholipids.

Further chromatography of the retarded protein peak from agarose on Sephadex G-200, again in the presence of surfactant, gave 2 protein peaks. Oxidative effectiveness resided almost entirely in the first peak, which was devoid of phospholipid, but high in xanthine oxidase activity. This fraction was subjected to isoelectric focusing, and the xanthine oxidase from this was highly pro-oxidative. Furthermore, its oxidative capability was almost doubled on heat treatment.

Type
Original Articles
Copyright
Copyright © Proprietors of Journal of Dairy Research 1977

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Allen, J. C. & Farag, R. S. (1973). Proceedings of the 3rd International Symposium on Metal-Catalysed Lipid Oxidation, p. 44. Paris: Institut des Corps Gras.Google Scholar
Allen, J. C. & Humphries, C. (1974). LKB Application Note 106. Bromma, Sweden: LKB-Produkter.Google Scholar
Allen, J. C. & Humphries, C. (1975 a). FEBS Letters 57, 158.CrossRefGoogle Scholar
Allen, J. C. & Humphries, C. (1975 b). Isoelectric Focusing, p. 347. (Eds Arbuthnott, J. P. and Beeley, J. A.) London: Butterworths.Google Scholar
Anderson, M. & Cawston, T. E. (1975). Journal of Dairy Research 42, 459.CrossRefGoogle Scholar
Aulakh, J. S. & Stine, C. M. (1971). Journal of Dairy Science 54, 1605.CrossRefGoogle Scholar
Bailie, M. J. & Morton, R. K. (1958). Biochemical Journal 69, 35.CrossRefGoogle Scholar
Bartlett, G. R. (1959). Journal of Biological Chemistry 234, 466.CrossRefGoogle Scholar
Basch, J. J., Farrell, H. M. & Greenberg, R. (1976). Federation Proceedings 35, 1449.Google Scholar
Bradford, H. F., Swanson, P. D. & Gammack, D. B. (1964). Biochemical Journal 92, 247.CrossRefGoogle Scholar
Carey, F. G., Fridovich, I. & Handler, P. (1961). Biochimica et Biophysica Acta 53, 440.CrossRefGoogle Scholar
Chien, H. C. & Richardson, T. (1967). Journal of Dairy Science 50, 451.CrossRefGoogle Scholar
Colton, D. G., Snow, L. D., Kobyla, D. & Carraway, K. L. (1976). Federation Proceedings 35, 1445.Google Scholar
Dowben, R. M., Brunner, J. R. & Philpott, D. E. (1967). Biochimica et Biophysica Acta 135, 1.CrossRefGoogle Scholar
Eriksson, C. E., Olsson, P. A. & Svensson, S. G. (1971). Journal of the American Oil Chemists' Society 48, 442.CrossRefGoogle Scholar
Eriksson, C. E. & Vallentin, K. (1973). Journal of the American Oil Chemists' Society 50, 264.CrossRefGoogle Scholar
Farag, R. S. (1974). Thesis, University of London.Google Scholar
Glöckner, W. M., Newman, R. A., Dahr, W. & Uhlenbruck, G. (1976). Biochimica et Biophysica Acta 443, 402.Google Scholar
Good, N. E., Winget, G. D., Winter, W., Connolly, T. N., Izawa, S. & Singh, R. M. M. (1966). Biochemistry 5, 467.CrossRefGoogle Scholar
Groves, M. L. (1971). Milk Proteins, 2, 367. (Ed. McKenzie., H. A.) London: Academic Press.CrossRefGoogle Scholar
Haase, G. & Dunkley, W. L. (1970). Milchwissenschaft 25, 656.Google Scholar
Hayashi, S. & Smith, L. M. (1965). Biochemistry 4, 2550.CrossRefGoogle Scholar
Kalckar, H. M. (1947). Journal of Biological Chemistry 167, 429.CrossRefGoogle Scholar
Keenan, T. W., Olsen, D. E. & Mollenhauer, H. H. (1971). Journal of Dairy Science 54, 295.CrossRefGoogle Scholar
Kobylka, D. & Carraway, K. L. (1972). Biochimica et Biophysica Acta 288, 282.CrossRefGoogle Scholar
Lea, C. H. (1957). Journal of the Science of Food and Agriculture 8, 1.CrossRefGoogle Scholar
Lowry, O. H., Rosebrough, N. J., Farr, A. L. & Randall, R. J. (1951). Journal of Biological Chemistry 193, 265.CrossRefGoogle Scholar
Malamy, M. & Horecker, B. L. (1966). Methods in Enzymology 9, 639.CrossRefGoogle Scholar
Mattsson, S. & Swartling, P. (1963). Milk and Dairy Research Report No. 68, p. 5. Alnarp, Sweden.Google Scholar
Morita, M. & Fujimaki, M. (1972 a). Agricultural and Biological Chemistry 36, 1163.CrossRefGoogle Scholar
Morita, M. & Fujimaki, M. (1972 b). Agricultural and Biological Chemistry 36, 1751.CrossRefGoogle Scholar
Morré, D. J. (1971). Methods in Enzymology 22, 130.Google Scholar
Morton, R. K. (1954). Biochemical Journal 57, 231.CrossRefGoogle Scholar
O'Mahony, J. P. & Shipe, W. F. (1970). Journal of Dairy Science 53, 636.Google Scholar
Palmer, G., Bray, R. C. & Beinert, H. (1964). Journal of Biological Chemistry 239, 2657.CrossRefGoogle Scholar
Patton, S., Durdan, A. & McCarthy, R. D. (1964). Journal of Dairy Science 47, 489.CrossRefGoogle Scholar
Sephton, H. H. & Sutton, D. A. (1956). Journal of the American Oil Chemists' Society 33, 263.CrossRefGoogle Scholar
Swanson, A. M. & Sommer, H. H. (1940). Journal of Dairy Science 23, 201.CrossRefGoogle Scholar
Swope, F. C. & Brunner, J. R. (1970). Journal of Dairy Science 53, 691.CrossRefGoogle Scholar