Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-18T14:08:04.173Z Has data issue: false hasContentIssue false

The nature of the stimulation of the growth of Streptococcus lactis by yeast extract

Published online by Cambridge University Press:  01 June 2009

J. Selby Smith
Affiliation:
Russell Grimwade School of Biochemistry, University of Melbourne, Parkville, Victoria, 3052, Australia
A. J. Hillier
Affiliation:
Russell Grimwade School of Biochemistry, University of Melbourne, Parkville, Victoria, 3052, Australia
G. J. Lees
Affiliation:
Russell Grimwade School of Biochemistry, University of Melbourne, Parkville, Victoria, 3052, Australia
G. R. Jago
Affiliation:
Dairy Research Laboratory, Division of Food Research, C.S.I.R.O., Highett, Victoria 3190, Australia

Summary

Yeast extract was fractionated on Sephadex G-25 into 7 fractions. The fraction most stimulatory to the growth of Streptococcus lactis C10 contained over 70% of the amino N present in yeast extract and consisted of a wide variety of free amino acids and a small amount of peptide material. Examination of possible replacement factors for this fraction revealed that the amino-acid material present was largely responsible for the stimulation of Str. lactis C10. Purine and pyrimidine bases and inorganic constituents also contributed to the stimulation. In addition, yeast extract contained a component which decomposed H2O2, a metabolite which accumulates in the growth medium under aerobic conditions and inhibits growth. The nature of the stimulation was studied by isolating slow and fast acid-producing colonies of Str. lactis C10. It appeared that yeast extract and other amino-acid supplements prevented an observed inhibition of the growth of the slow variants below pH 6·0, apparently by satisfying a nutritional deficiency caused by a drop in pH.

Type
Research Article
Copyright
Copyright © Proprietors of Journal of Dairy Research 1975

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Anders, R. F., Hogg, D. McC. & Jago, G. R. (1970). Applied Microbiology 19, 608.CrossRefGoogle Scholar
Anderson, A. W. & Elliker, P. R. (1953). Journal of Dairy Science 36, 608.CrossRefGoogle Scholar
Braz, M. & Allen, L. A. (1939). Journal of Dairy Research 10, 20.CrossRefGoogle Scholar
Citti, J. E., Sandine, W. E. & Elliker, P. R. (1965). Journal of Dairy Science 48, 14.CrossRefGoogle Scholar
Coleman, I. W. (1951). Canadian Journal of Medical Sciences 29, 151.CrossRefGoogle Scholar
Dahiya, R. S. & Speck, M. L. (1963). Journal of Bacteriology 85, 585.CrossRefGoogle Scholar
Dahiya, R. S. & Speck, M. L. (1964). Journal of Dairy Science 47, 374.CrossRefGoogle Scholar
Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A. & Smith, F. (1956). Analytical Chemistry 28, 350.CrossRefGoogle Scholar
Feeney, R. E. & Strong, F. M. (1941). Journal of Biological Chemistry 140, xxxviii.Google Scholar
Garvie, E. I. & Mabbitt, L. A. (1956). Journal of Dairy Research 23, 305.CrossRefGoogle Scholar
Grant, C. L. & Pramer, D. (1962). Journal of Bacteriology 84, 869.CrossRefGoogle Scholar
Halvorson, H. O. & Muedeking, M. R. (1947). Journal of Bacteriology 54, 39.Google Scholar
Hoffmann, H. A. & Pavcek, P. L. (1952). Journal of the American Chemical Society 74, 344.CrossRefGoogle Scholar
Hogg, D. McC. & Jago, G. R. (1970). Journal of Dairy Research 37, 199.CrossRefGoogle Scholar
Ikawa, M. & O'Barr, J. S. (1956). Journal of Bacteriology 71, 401.CrossRefGoogle Scholar
Jago, G. R. (1957). Thesis, University of Melbourne.Google Scholar
Koburger, J. A. & Speck, M. L. & Aurand, L. W. (1963). Journal of Bacteriology, 85, 1051.CrossRefGoogle Scholar
Kolthoff, I. M. & Sandell, E. B. (1952). Textbook of Quantitative Inorganic Analysis, 3rd edn, p. 574. New York: Macmillan Co.Google Scholar
Lüthi, H. & Vetsch, U. (1960). Journal of Applied Bacteriology 22, 384.Google Scholar
McAnelly, J. K. & Speck, M. L. (1957). Journal of Bacteriology 73, 676.CrossRefGoogle Scholar
McKenzie, H. A. (1967). Advances in Protein Chemistry 22, 55.CrossRefGoogle Scholar
Olson, H. C. & Qutub, A. H. (1970). Cultured Dairy Products Journal 5(2),12;Google Scholar
cited in Dairy Science Abstracts (1971) 33, 139.Google Scholar
Payne, J. W. & Gilvary, C. (1971). Advances in Enzymology 35, 187.Google Scholar
Pearce, L. E. (1970). 18th International Dairy Congress, Sydney, 1E, 118.Google Scholar
Sandine, W. E., Speck, M. L. & Aurand, L. W. (1956). Journal of Dairy Science 39, 1532.CrossRefGoogle Scholar
Smith, F. R. (1943). Journal of Bacteriology 46, 369.CrossRefGoogle Scholar
Spackman, D. H. (1963). Federation Proceedings 22, 244.Google Scholar
Speck, M. L., McAnelly, J. K. & Wilbur, J. D. (1958). Journal of Dairy Science 41, 502.CrossRefGoogle Scholar
Taniguchi, K., Nagao, A. & Tsugo, T. (1965). Japanese Journal of Zootechnical Science 36, 376.Google Scholar
Van Der zant, W. C. & Nelson, F. E. (1954). Journal of Dairy Science 37, 790.CrossRefGoogle Scholar
Weinman, D. E., Morris, G. K. & Williams, W. L. (1964). Journal of Bacteriology 87, 263.CrossRefGoogle Scholar
Westhoff, D. C. & Cowman, R. A. (1971). Journal of Dairy Science 54, 1265.CrossRefGoogle Scholar
Westhoff, D. C., Cowman, R. A. & Speck, M. L. (1971). Journal of Dairy Science 54, 1253.CrossRefGoogle Scholar
Westhoff, D. C., Cowman, R. A. & Swaisgood, H. E. (1971). Journal of Dairy Science 54, 1259.CrossRefGoogle Scholar
Yemm, E. W. & Cocking, E. C. (1955). Analyst 80, 209.CrossRefGoogle Scholar