Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-26T23:15:31.705Z Has data issue: false hasContentIssue false

Milk-fat globule membrane in homogenized cream

Published online by Cambridge University Press:  01 June 2009

Donald F. Darling
Affiliation:
Unilever Laboratory, Colworth House, Sharnbrook, Bedford
David W. Butcher
Affiliation:
Unilever Laboratory, Colworth House, Sharnbrook, Bedford

Summary

The proteins of the milk-fat globule membrane in homogenized cream have been studied using polyacrylamide-gel electrophoresis and electron microscopy. The effects of pasteurization and subsequent storage of the homogenized cream on the strength and composition of the membrane have also been investigated. Caseins and undenatured whey proteins are adsorbed to the fat–serum interface during homogenization; the caseins are the more dominant group, but with no apparent preference for any individual protein. After homogenization, but before pasteurization, whey proteins are more easily removed by washing than are the casein components. After subsequent pasteurization, and on storage, whey proteins become more tightly bound and are no longer readily removed by washing. Electron micrographs showed that the interfacial membrane between fat droplets and the serum phase consists of a protein composite material containing casein micelles, casein micellar sub-units and molecular, or non-micellar protein.

Type
Original Articles
Copyright
Copyright © Proprietors of Journal of Dairy Research 1978

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Anderson, M., Brooker, B. E., Cawston, T. E. & Cheeseman, G. C. (1977). Journal of Dairy Research 44, 111.CrossRefGoogle Scholar
Berger, K. G. & White, G. W. (1971). Journal of Food Technology 6, 285.CrossRefGoogle Scholar
Brunner, J. R., Duncan, C. W. & Trout, G. M. (1953 a). Food Research 18, 454.CrossRefGoogle Scholar
Brunner, J. R., Duncan, C. W., Trout, G. M. & Mackenzie, M. (1953 c). Food Research 18, 469.CrossRefGoogle Scholar
Brunner, J. R., Lillevik, H. A., Trout, G. M. & Duncan, C. W. (1953 b). Food Research 18, 463.CrossRefGoogle Scholar
Darling, D. F. & Butcher, D. W. (1976). Journal of Dairy Science 59, 863.CrossRefGoogle Scholar
Fenwick, R. M. (1971). New Zealand Journal of Dairy Science and Technology 6, 123.Google Scholar
Fox, K. K., Holsinger, V. H., Caha, J. & Pallansch, M. J. (1960). Journal of Dairy Science 43. 1396.CrossRefGoogle Scholar
Henstra, S. & Schmidt, D. G. (1970). Netherlands Milk and Dairy Journal 24, 45.Google Scholar
Jenness, R. & Koops, J. (1962). Netherlands Milk and Dairy Journal 16, 153.Google Scholar
King, N. (1955). Technical Communication, Commonwealth Bureau of Dairy Science no. 2.Google Scholar
Mangino, M. E. & Brunner, J. R. (1975). Journal of Dairy Science 58, 313.CrossRefGoogle Scholar
Mulder, H. & Walstra, P. (1974). The Milk Fat Globule. Wageningen: Pudoc.Google Scholar
Ogden, L. V. (1973). Thesis, Minnesota University, U.S.A.Google Scholar
Patton, S. & Keenan, T. W. (1975). Biochimica et Biophysica Acta 415, 273.CrossRefGoogle Scholar
Phillips, M., Graham, D., Evans, M. & Oldani, D. (1975). Colloid and Polymer Science 253, 424.CrossRefGoogle Scholar
Schmidt, D. G., Buchheim, W. & Koops, J. (1971). Netherlands Milk and Dairy Journal 25, 200.Google Scholar
Schmidt, D. G., Walstra, P. & Buchheim, W. (1973). Netherlands Milk and Dairy Journal 27, 128.Google Scholar
Stevens, J. V. (1974). 19th International Dairy Congress, New Delhi 1E, 172.Google Scholar
Swope, F. C. & Brunner, J. R. (1970). Journal of Dairy Science 53, 691.CrossRefGoogle Scholar
Vincent, B. (1974). Advances in Colloid and Interface Science 4, 193.CrossRefGoogle Scholar
Walstra, P. (1975). Netherlands Milk and Dairy Journal 29, 279.Google Scholar
Weber, K. & Osborn, M. (1969). Journal of Biological Chemistry 244, 4406.CrossRefGoogle Scholar