Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-22T08:52:39.632Z Has data issue: false hasContentIssue false

Metabolism of [14C]bicarbonate by Streptococcus lactis: identification and distribution of labelled compounds

Published online by Cambridge University Press:  01 June 2009

Alan J. Hillier
Affiliation:
Russell Grimwade School of Biochemistry, University of Melbourne, Parkville, Victoria 3052, Australia
G. Richard Jago
Affiliation:
Dairy Research Laboratory, Division of Food Research, CSIRO, Highett, Victoria 3190, Australia

Summary

Streptococcus lactis C10, grown in tryptone–yeast extract–lactose broth containing [14C] bicarbonate, incorporated radioactivity into the protein and nucleic acid fractions of the cell as well as into compounds which were excreted by the organism into the growth medium. Aspartic acid was the first compound to be labelled and was the only amino acid labelled in the cell protein. All 4 bases were labelled in the cell RNA. Aspartic, succinic and lactic acids were the radioactive compounds excreted into the growth medium.

Type
Original Articles
Copyright
Copyright © Proprietors of Journal of Dairy Research 1978

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Atkins, C. A. & Canvin, D. T. (1971). Canadian Journal of Biochemistry 49, 949.CrossRefGoogle Scholar
Gladstone, G. P., Fildes, P. & Richardson, G. M. (1935). British Journal of Experimental Pathology 16, 335.Google Scholar
Goff, R. C. & Hartman, R. E. (1970). Journal of Bacteriology 104, 27.CrossRefGoogle Scholar
Greenberg, D. M. (1969). In Metabolic Pathways, 3rd Edn, vol III, p. 95. (Ed. Greenborg, D. M..) New York: Academic Press.Google Scholar
Hillier, A. J. & Jago, G. R. (1978). Journal of Dairy Research 45, in press.Google Scholar
Jago, G. R. (1957). Thesis, University of Melbourne.Google Scholar
Lachica, V. F. & Hartman, P. A. (1969 a). Canadian Journal of Microbiology 15, 57.CrossRefGoogle Scholar
Lachica, V. F. & Hartman, P. A. (1969 b). Canadian Journal of Microbiology 15, 61.CrossRefGoogle Scholar
McKay, L. L., Walter, L. A., Sandine, W. E. & Elliker, P. R. (1969). Journal of Bacteriology 99, 603.CrossRefGoogle Scholar
Magasanik, B. (1962). In The Bacteria, vol. III, p. 295. (Eds Gunzalus, I. C. and Stanier, R. Y..) New York: Academic Press.Google Scholar
Mahon, J. D., Egle, K. & Fock, H. (1975). Canadian Journal of Biochemistry 53, 609.CrossRefGoogle Scholar
Martin, W. R. & Niven, C. F. Jr (1960). Journal of Bacteriology 79, 295.CrossRefGoogle Scholar
Platt, T. B. & Foster, E. M. (1958). Journal of Bacteriology 75, 453.CrossRefGoogle Scholar
Prescott, J. M., Ragland, R. S. & Hurley, R. J. (1965). Proceedings of the Society for Experimental Biology and Medicine 119, 1097.CrossRefGoogle Scholar
Randerath, K. & Randerath, E. (1966). Journal of Chromatography 22, 110.CrossRefGoogle Scholar
Reiter, B. & Oram, J. D. (1961). Journal of Dairy Research 28, 175.CrossRefGoogle Scholar
Rice, G. H., Stewart, F. H. C., Hillier, A. J. & Jago, G. R. (1978). Journal of Dairy Research 45, 93.CrossRefGoogle Scholar
Roberts, R. B., Abelson, P. H., Cowie, D. B., Bolton, E. T. & Britten, R. J. (1955). Studies of Biosynthesis in Escherichia coli, p. 13. Washington D.C.: Carnegie Institution of Washington.Google Scholar
Slade, H. D., Wood, H. G.,Nier, A. O., Hemingway, A. & Werkman, C. H. (1942). Journal of Biological Chemistry 143, 133.CrossRefGoogle Scholar
Wakil, S. J. (1962). Annual Review of Biochemistry 31, 369.CrossRefGoogle Scholar
Whitehead, H. R., Jones, P. A. & Robertson, P. S. (1958). Journal of Dairy Research 25, 24.CrossRefGoogle Scholar
Wright, D. E. (1960). Journal of General Microbiology 22, 713.CrossRefGoogle Scholar