Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-26T11:31:06.988Z Has data issue: false hasContentIssue false

Metabolism of [1-14C]palmitate and [1-14C]oleate by the isolated perfused mammary gland of the sheep or goat

Published online by Cambridge University Press:  01 June 2009

Anne-Marie Massart-Leën
Affiliation:
Physiological Department of the Veterinary College, University of Ghent, Belgium
S. Florescu
Affiliation:
Physiological Department of the Veterinary College, University of Ghent, Belgium
R. Verbeke
Affiliation:
Physiological Department of the Veterinary College, University of Ghent, Belgium
G. Peeters
Affiliation:
Physiological Department of the Veterinary College, University of Ghent, Belgium

Summary

Lactating mammary glands of sheep and goats were perfused for several hours in the presence of [1-14C]palmitate or [1-14C]oleate. Adequate quantities of acetate, glucose, amino acids and chylomicrons were added to the perfusate.

The fall in specific activity of [1-14C]palmitic acid or [1-14C]oleic acid across the gland and the labelling of milk triglyceride fatty acids indicates an extensive transfer of radioactivity from plasma free fatty acids (FFA). The plasma triglycerides showed large arterio-venous differences in concentration. The small [14C] incorporation in plasma triglycerides decreased across the gland. In a control experiment triglycerides were also slightly labelled.

There were no significant arterio-venous differences in cholesterol esters and their fatty acid composition showed only slight changes during passage through the gland. Their specific activity showed a small rise across the gland.

In milk components, the [14C] was mainly localized in the triglycerides. An appreciable proportion of the palmitoleate is derived from palmitate by dehydrogenation within the gland, while there is no evidence for the hydrogenation of oleic acid to stearic acid. Elongation of palmitic acid to C18-acids does not occur to any important extent. FFA are catabolized to a variable extent by the gland.

The role of FFA in labelling of milk and blood plasma fatty acid fraction is discussed.

Type
Original Articles
Copyright
Copyright © Proprietors of Journal of Dairy Research 1970

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Annison, E. F., Linzell, J. L., Fazakerley, S. & Nichols, B. W. (1967). Biochem. J. 102, 637.CrossRefGoogle Scholar
Barry, J. M., Bartley, W., Linzell, J. L. & Robinson, D. S. (1963). Biochem. J. 89, 6.CrossRefGoogle Scholar
Bishop, C., Davies, T., Glascock, R. F. & Welch, V. A. (1969). Biochem. J. 113, 629.CrossRefGoogle Scholar
Blankenhorn, D. H., Rouser, G. & Weimer, T. J. (1961). J. Lipid Res. 2, 281.CrossRefGoogle Scholar
Carroll, K. K. (1961). J. Lipid Res. 2, 135.CrossRefGoogle Scholar
Cuppy, D. & Crevasse, L. (1963). Analyt. Biochem. 5, 462.CrossRefGoogle Scholar
De Francesco, F. & Maglitto, C. L. (1962). Riv. ital. Sostanze grasse 5, 245.Google Scholar
De Vries, B. & Jurriens, G. (1963). Fette Seifen Anstr Mittel 65, 725.CrossRefGoogle Scholar
Dimick, P. S., McCarthy, R. D. & Patton, S. (1966). Biochim. biophys. Acta 116, 159.CrossRefGoogle Scholar
Dole, V. P. (1956). J. clin. Invest. 35, 150.CrossRefGoogle Scholar
Folch, J., Lees, M. & Sloane Stanley, G. H. (1957). J. biol. Chem. 226, 497.CrossRefGoogle Scholar
Fredrickson, D. S. & Gordon, R. S. Jr (1958). Physiol. Rev. 38, 585.CrossRefGoogle Scholar
Hardwick, D. C. & Linzell, J. L. (1960). J. Physiol., Lond. 154, 547.CrossRefGoogle Scholar
Hardwick, D. C., Linzell, J. L. & Price, S. M. (1961). Biochem. J. 80, 37.CrossRefGoogle Scholar
Hartmann, P. E. & Lascelles, A. K. (1964). Aust. J. biol. Sci. 17, 935.CrossRefGoogle Scholar
Herberg, R. J. (1965). Packard tech. Bull. no. 15.Google Scholar
Lascelles, A. K., Hardwick, D. C., Linzell, J. L. & Mepham, T. B. (1964). Biochem. J. 92, 36.CrossRefGoogle Scholar
Lascelles, A. K. & Morris, B. (1961). Q. Jl exp. Physiol. 46, 199.CrossRefGoogle Scholar
Lauryssens, M., Verbeke, R. & Peeters, G. (1961). J. Lipid Res. 2, 383.CrossRefGoogle Scholar
Linzell, J. L., Annison, E. F., Fazakerley, S. & Leng, R. A. (1967). Biochem. J. 104, 34.CrossRefGoogle Scholar
McBride, O. W. & Korn, E. D. (1964). J. Lipid Res. 5, 448.CrossRefGoogle Scholar
Patton, S. & McCarthy, R. D. (1963). J. Dairy Sci. 46, 396.CrossRefGoogle Scholar
Verbeke, R., Feteanu, A. & Peeters, G. (1967). Archs int. Physiol. Biochim. 75, 675.Google Scholar
Verbeke, R., Peeters, G., Massart-Leën, A. M. & Cocquyt, G. (1968). Biochem. J. 106, 719.CrossRefGoogle Scholar
West, C. E., Annison, E. F. & Linzell, J. L. (1967). Biochem. J. 104, 59p.Google Scholar