Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2025-01-05T19:25:13.787Z Has data issue: false hasContentIssue false

Mechanism of aggregation of casein micelles in rennet-treated milk

Published online by Cambridge University Press:  01 June 2009

Margaret L. Green
Affiliation:
National Institute for Research in Dairying, Shinfield, Reading, RG2 9 AT
Steven V. Morant
Affiliation:
National Institute for Research in Dairying, Shinfield, Reading, RG2 9 AT

Summary

The frequency distribution of aggregates of casein micelles was determined inelectron micrographs of rennet-treated skim-milk. The average degree of aggregation was constant until after 60% of the coagulation time, then increased linearly to 100% of the coagulation time and subsequently rose more slowly. The observations indicated that the rate of aggregation of casein micelles was determined by the random collision of particles, with no preference for the formation or reaction of aggregates of any particular size. The linking together of micelles was not rate-determining.

Type
Original Articles
Copyright
Copyright © Proprietors of Journal of Dairy Research 1981

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Claesson, O. & Claesson, E. (1970). 18th International Dairy Congress, Sydney 1E, 42.Google Scholar
Dalgleish, D. G. (1979). Journal of Dairy Research 46, 653661.CrossRefGoogle Scholar
Flory, P. J. (1953). Principles of Polymer Chemistry, chap. IX. Ithaca, N.Y.: Cornell University Press.Google Scholar
Green, M. L., Hobbs, D. G. & Morant, S. V. (1978 a). Journal of Dairy Research 45, 405411.CrossRefGoogle Scholar
Green, M. L., Hobbs, D. G., Morant, S. V. & Hill, V. A. (1978 b). Journal of Dairy Research 45, 413422.CrossRefGoogle Scholar
Hansson, E., Sjöström, G. & Samuelsson, E-G. (1949). 12th International Dairy Congress, Stockholm 2, 59–65. Stockholm 2, 5965.Google Scholar
Hyslop, D. B., Richardson, T. & Ryan, D. S. (1979). Biochimica et Biophysica Acta 566, 390396.CrossRefGoogle Scholar
Kirchmeier, O. (1972). Zeitschrift für Lebensmittel-Untersuchung und-Forschung 149, 139144.CrossRefGoogle Scholar
Olson, N. F. & Bottazzi, V. (1977). Journal of Food Science 42, 669673.CrossRefGoogle Scholar
THOverbeek, J. G. (1952). In Colloid Science, vol. 1, p. 278. (Ed. Kruyt, H. R.) Amsterdam: Elsevier.Google Scholar
Payens, T. A. J. (1977). Biophysical Chemistry 6, 263270.CrossRefGoogle Scholar
Payens, T. A. J. (1978). Faraday Discussions 65, 164174.CrossRefGoogle Scholar
Payens, T. A. J., Wiersma, A. K. & Brinkhuis, J. (1977). Biophysical Chemistry 6, 253261.CrossRefGoogle Scholar
Schmidt, D. G., Walstra, P. & Buchheim, W. (1973). Netherlands Milk and Dairy Journal 27, 128142.Google Scholar
Sutherland, D. N. (1967). Journal of Colloid and Interface Science 25, 373380.CrossRefGoogle Scholar
Sutherland, D. N. (1970). Nature 226, 12411242.CrossRefGoogle Scholar
Tombs, M. P. (1970). In Proteins as Human Food, pp. 126138. (Ed. Lawrie, R. A.) London: Butterworths.CrossRefGoogle Scholar
Walstra, P. (1979). Journal of Dairy Research 46, 317323.CrossRefGoogle Scholar