Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-09T13:46:09.604Z Has data issue: false hasContentIssue false

Kefir grains as a starter for whey fermentation at different temperatures: chemical and microbiological characterisation

Published online by Cambridge University Press:  17 April 2012

Alejandra Londero
Affiliation:
Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA, CONICET – UNLP), Calle 47 y 116, CP 1900, La Plata, Argentina
María F. Hamet
Affiliation:
Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA, CONICET – UNLP), Calle 47 y 116, CP 1900, La Plata, Argentina
Graciela L. De Antoni
Affiliation:
Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA, CONICET – UNLP), Calle 47 y 116, CP 1900, La Plata, Argentina Cátedra de Microbiología, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calle 47 y 115, CP 1900, La Plata, Argentina
Graciela L. Garrote*
Affiliation:
Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA, CONICET – UNLP), Calle 47 y 116, CP 1900, La Plata, Argentina Cátedra de Microbiología, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calle 47 y 115, CP 1900, La Plata, Argentina
Analía G. Abraham
Affiliation:
Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA, CONICET – UNLP), Calle 47 y 116, CP 1900, La Plata, Argentina Área Bioquímica y Control de Alimentos, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calle 47 y 115, CP 1900, La Plata, Argentina
*
*For correspondence; e-mail: [email protected]

Abstract

We report here a comparative analysis of the growth, acidification capacity, and chemical and microbiologic composition between kefir grains after 20 subcultures in whey at 20, 30, and 37°C and the original kefir grains coming from milk along with a determination of the microbiological composition of the fermented whey as compared with that of traditional fermented milk.

When fermentation was carried out repeatedly at 30 or 37°C, kefir grains changed their kefir-like appearance, exhibited reduced growth rates, had a lower diversity of yeasts and water content, and a higher protein-to-polysaccharide ratio compared with the original kefir grains. In contrast, at 20°C kefir grains could remain in whey for prolonged periods without altering their acidification capacity, growth rate, macroscopic appearance or chemical and microbiologic composition—with the only difference being a reduction in certain yeast populations after 20 subcultures in whey. At this incubation temperature, the presence of Lactobacillus kefiranofaciens, Lb. kefir, Lb. parakefir, Lactococcus lactis, Kluyveromyces marxianus, Saccharomyces unisporus, and Sac. cerevisiae was detected in kefir grains and in fermented whey by denaturing-gradient-gel electrophoresis (DGGE). In whey fermented at 20°C the number of lactic-acid bacteria (LAB) was significantly lower (P<0·05) and the number of yeast significantly higher (P<0·05) than in fermented milk. Since the DGGE profiles were similar for both products, at this temperature the microbiologic composition of fermented whey is similar to that of fermented milk. We therefore suggest a temperature of 20°C to preserve kefir grains as whey-fermentation starters.

Type
Research Article
Copyright
Copyright © Proprietors of Journal of Dairy Research 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abraham, AG, Medrano, M, Piermaria, JA & Mozzi, F 2010 Novel applications of polysaccharides from lactic acid bacteria: a focus on kefiran. In Food Hydrocolloids: Characteristics, Properties and Structures, pp. 253271 (Ed. Hollingworth, CS). ISBN: 97801-60876-222-4. Hauppauge, NY, USA: Nova Science Publishers Google Scholar
Assadi, MM, Pourahmad, R & Moazami, N 2008 Use of isolated kefir starter cultures in kefir production. Journal of Microbiology and Biotechnology 16 541543 CrossRefGoogle Scholar
Athanasiadis, I, Boskou, D, Kanellaki, M, Kiosseoglou, V & Koutinas, AA 2002 Whey liquid waste of the dairy industry as raw material for potable alcohol production by Kefir granules. Journal of Agricultural and Food Chemistry 50 72317234 CrossRefGoogle ScholarPubMed
Athanasiadis, I, Paraskevopoulou, A, Blekas, G & Kiosseoglou, V 2004 Development of a novel whey beverage by fermentation with kefir granules. Effect of various treatments. Biotechnology Progress 20 10911095 CrossRefGoogle ScholarPubMed
Chen, HC, Wang, SY & Chen, MJ 2008 Microbiological study of lactic acid bacteria in kefir grains by culture-dependent and culture-independent methods. Food Microbiology 25 492501 CrossRefGoogle ScholarPubMed
Cocolin, L, Aggio, D, Manzano, M, Cantoni, C & Comi, G 2002 An application of PCR-DGGE analysis to profile the yeast populations in raw milk. International Dairy Journal 12 407411 CrossRefGoogle Scholar
Dimitrellou, D, Kourkoutas, Y, Banat, IM, Marchant, R & Koutinas, AA 2007 Whey-cheese production using freeze-dried kefir culture as a starter. Journal of Applied Microbiology 103 11701183 CrossRefGoogle ScholarPubMed
Dimitrellou, D, Kourkoutas, Y, Koutinas, AA & Kanellaki, M 2009 Thermally-dried immobilized kefir on casein as starter culture in dried whey cheese production. Food Microbiology 26 809820 CrossRefGoogle ScholarPubMed
Dobson, A, O'Sullivan, O, Cotter, PD, Ross, P & Hill, C 2011 High-throughput sequence-based analysis of the bacterial composition of kefir and an associated kefir grain. FEMS Microbiology Letters 320 5662 CrossRefGoogle Scholar
Ferreira, IMPLVO, Pinho, O, Monteiro, D, Faria, S, Cruz, S, Perreira, A, Roque, AC & Tavares, P 2010 Short communication: Effect of kefir grains on proteolysis of major milk proteins. Journal of Dairy Science 93 2731 CrossRefGoogle ScholarPubMed
Garbers, IM, Britz, TJ & Witthuhn, RC 2004 PCR-based denaturing gradient gel electrophoretic typification and identification of the microbial consortium present in kefir grains. World Journal of Microbiology and Biotechnology 20 687693 CrossRefGoogle Scholar
Garrote, GL, Abraham, AG & De Antoni, GL 2001 Chemical and microbiological characterization of kefir grains. Journal of Dairy Research 68 639652 CrossRefGoogle ScholarPubMed
Garrote, GL, Abraham, AG & De Antoni, GL 2010 Microbial interactions in kefir: a natural probiotic drink. In Biotechnology of Lactic Acid Bacteria, pp. 327340 (Ed. Mozzi, F, Raya, R & Vignolo, M). ISBN 978-0-8138-1583-1 Ames, USA: Blackwell Publishing CrossRefGoogle Scholar
Golfinopoulos, A, Kopsahelis, N, Tsaousi, K, Koutinas, AA & Soupioni, M 2011 Research perspectives and role of lactose uptake rate revealed by its study using 14C-labelled lactose in whey fermentation. Bioresource Technology 102 42044209 CrossRefGoogle ScholarPubMed
Golowczyc, MA, Gugliada, MJ, Hollmann, A, Delfederico, L, Garrote, GL, Abraham, AG, Semorile, L & De Antoni, GL 2008 Characterization of homofermentative lactobacilli isolated from kefir grains: potential use as probiotic. Journal of Dairy Research 75 211217 CrossRefGoogle ScholarPubMed
Golowczyc, MA, Mobili, P, Garrote, GL, Abraham, AG & De Antoni, GL 2007 Protection of Lactobacillus kefir carring S-layer protein against Salmonella enterica serovar Enteritidis. International Journal of Food Microbiology 118 264273 CrossRefGoogle Scholar
Goršek, A & Zajsek, K 2010 Influence of temperature variations on ethanol production by kefir grains - Mathematical model development. Chemical Engineering Transactions 20 181186 Google Scholar
Harta, O, Iconomopoulou, M, Bekatorou, A, Nigam, P, Kontominas, M & Koutinas, AA 2004 Effect of various carbohydrate substrates on the production of kefir grains for use as a novel baking starter. Food Chemistry 88 237242 CrossRefGoogle Scholar
Heuer, H, Krsek, M, Baker, P, Smalla, K & Wellington, EMH 1997 Analysis of actinomycete communities by specific amplification of genes encoding 16S rRNA and gel-electrophoretic separation in denaturing gradients. Applied and Environmental Microbiology 63 32333241 CrossRefGoogle ScholarPubMed
Katechaki, E, Panas, P, Kourkoutas, Y, Koliopoulos, D & Koutinas, AA 2009 Thermally-dried free and immobilized kefir cells as starter culture in hard-type cheese production. Bioresource Technology 100 36183624 CrossRefGoogle ScholarPubMed
Katechaki, E, Panas, P, Rapti, K, Kandilogiannakis, L & Koutinas, AA 2008 Production of hard-type cheese using free or immobilized freeze-dried kefir cells as a starter culture. Journal of Agricultural and Food Chemistry 56 53165323 CrossRefGoogle ScholarPubMed
Kourkoutas, Y, Kandylis, P, Panas, P, Dooley, JSG, Nigam, P & Koutinas, AA 2006 Evaluation of freeze-dried kefir coculture as starter in feta-type cheese production. Applied and Environmental Microbiology 72 61246135 CrossRefGoogle ScholarPubMed
Kourkoutas, Y, Psarianos, C, Koutinas, AA, Kanellaki, M, Banat, IM & Marchant, R 2002 Continuous whey fermentation using kefir yeast immobilized on delignified cellulosic material. Journal of Agricultural and Food Chemistry 50 25432547 CrossRefGoogle ScholarPubMed
Koutinas, AA, Athanasiadis, I, Bekatorou, A, Iconomopoulou, M & Blekas, G 2005 Kefir yeast technology: Scale-up in SCP production using milk whey. Biotechnology and Bioengineering 89 788796 CrossRefGoogle ScholarPubMed
Koutinas, AA, Athanasiadis, I, Bekatorou, A, Psarianos, C, Kanellaki, M, Agouridis, N & Blekas, G 2007 Kefir-yeast technology: Industrial scale-up of alcoholic fermentation of whey, promoted by raisin extracts, using kefir-yeast granular biomass. Enzyme and Microbial Technology 41 576582 CrossRefGoogle Scholar
Koutinas, AA, Bekatorou, A, Katechaki, E, Dimitrellou, D, Kopsahelis, N, Papapostolou, H, Panas, P, Sideris, K, Kallis, M, Bosnea, LA, Koliopoulos, D, Sotiropoulos, P, Panteli, A, Kourkoutas, Y, Kanellaki, M & Soupioni, M 2010 Scale-up of thermally dried kefir production as starter culture for hard-type cheese making: an economic evaluation. Applied Biochemistry and Biotechnology 160 17341743 CrossRefGoogle ScholarPubMed
Koutinas, AA, Papapostolou, H, Dimitrellou, D, Kopsahelis, N, Katechaki, E, Bekatorou, A & Bosnea, LA 2009 Whey valorisation: A complete and novel technology development for dairy industry starter culture production. Bioresource Technology 100 37343739 CrossRefGoogle ScholarPubMed
Londero, A, Quinta, R, Abraham, AG, Sereno, R, De Antoni, GL & Garrote, GL 2011 Inhibitory activity of cheese whey fermented with kefir grains. Journal of Food Protection 74 94100 CrossRefGoogle ScholarPubMed
Loretan, T, Mostert, JF & Viljoen, BC 2003 Microbial flora associated with South African household kefir South African. Journal of Science 99 9294 Google Scholar
Magalhães, KT, Dias, DR, de Melo Pereira, GV, Oliveira, JM, Domingues, L, Teixeira, JA, de Almeida e Silva, JB & Schwan, RF 2011b Chemical composition and sensory analysis of cheese whey-based beverages using kefir grains as starter culture. International Journal of Food Science and Technology 46 871878 CrossRefGoogle Scholar
Magalhães, KT, Dragone, G, Gilberto, V, de Melo Pereira, GV, Oliveira, JM, Domingues, L, Teixeira, JA, Almeida Silva, JB & Schwan, RF 2011a Comparative study of the biochemical changes and volatile compound formations during the production of novel whey-based kefir beverages and traditional milk kefir. Food Chemistry 126 249253 CrossRefGoogle Scholar
Magalhães, KT, Pereira, MA, Nicolau, A, Dragone, G, Domingues, L, Teixeira, JA, de Almeida Silva, JB & Schwan, RF 2010 Production of fermented cheese whey-based beverage using kefir grains as starter culture: Evaluation of morphological and microbial variations. Bioresource Technology 101 88438850 CrossRefGoogle ScholarPubMed
Muyzer, G, Waal, EC & Uitterlinden, AG 1993 Profile of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction: Amplified genes coding for 16S rDNA. Applied and Environmental Microbiology 59 695700 CrossRefGoogle Scholar
Palys, T, Nakamura, LK & Cohan, FM 1997 Discovery and classification of ecological diversity in the bacterial world: The role of DNA sequence data. International Journal of Systematic Bacteriology 47 11451156 CrossRefGoogle ScholarPubMed
Panesar, PS, Kennedy, JF, Gandhi, DN & Bunko, K 2007 Bioutilisation of whey for lactic acid production. Food Chemistry 105 114 CrossRefGoogle Scholar
Paraskevopoulou, A, Athanasiadis, I, Kanellaki, M, Bekatorou, A, Blekas, G & Kiosseoglou, V 2003 Functional properties of single cell protein produced by kefir microflora. Food Research International 36 431438 CrossRefGoogle Scholar
Plessas, S, Bekatorou, A, Kanellaki, M, Koutinas, AA, Marchant, R & Banat, IM 2007 Use of immobilized cell biocatalysts in baking. Process Biochemistry 42 12441249 CrossRefGoogle Scholar
Plessas, S, Pherson, L, Bekatorou, A, Nigam, P & Koutinas, AA 2005 Bread making using kefir grains as baker's yeast. Food Chemistry 93 585589 CrossRefGoogle Scholar
Polz, MF & Cavanaugh, CM 1998 Bias in template-to-product ratios in multitemplate PCR. Applied and Environmental Microbiology 64 37243730 CrossRefGoogle ScholarPubMed
Rimada, P & Abraham, AG 2001 Polysaccharide production during whey fermentation by kefir grains. Journal of Dairy Research 68 653661 CrossRefGoogle ScholarPubMed
Rimada, P & Abraham, AG 2003 Comparative study of different methodologies to determine the exopolysaccharide produced by kefir grains in milk and whey. Le Lait 83 7988 CrossRefGoogle Scholar
Rimada, P & Abraham, AG 2006 Kefiran improves rheological properties of glucono lactona induced skim milk gels. International Dairy Journal 16 3339 CrossRefGoogle Scholar
Romanin, D, Serradell, M, González, Maciel D, Lausada, N, Garrote, GL & Rumbo, M 2010 Down-regulation of intestinal epithelial innate response by probiotic yeasts isolated from kefir. International Journal of Food Microbiology 140 102108 CrossRefGoogle ScholarPubMed
Simova, E, Beshkova, D, Angelov, A, Hristozova, T, Frengova, G & Spasov, Z 2002 Lactic acid bacteria and yeasts in kefir grains and kefir made from them. Journal of Industrial Microbiology and Biotechnology 28 16 CrossRefGoogle Scholar
Stackebrandt, E & Goebel, BM 1994 Taxonomic note: A place for DNA–DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. International Journal of Systematic Bacteriology 44 846849 Google Scholar
Southgate, DAT 1976 Selected methods In Determination of Food Carbohydrates. pp. 99144 (Ed. Southgate, DAT). Essex, UK: Applied Science Publishers Ltd.Google Scholar
Suzuki, MT & Giovannoni, SJ 1996 Bias caused by template annealing in the amplification of mixtures of 16S rRNA genes by PCR. Applied and Environmental Microbiology 62 625630 CrossRefGoogle ScholarPubMed
Wang, YY, Li, HR, Jia, SF, Wu, ZJ & Guo, BH 2006 Analysis of bacterial diversity of kefir grains by denaturing gradient gel electrophoresis and 16S rDNA sequencing. Wei sheng wu xue bao (Acta microbiologica Sinica) 46 310313 Google ScholarPubMed
Witthuhn, RC, Schoeman, T & Britz, TJ 2004 Isolation and characterization of the microbial population of different South African kefir grains. International Journal of Dairy Technology 57 3337 CrossRefGoogle Scholar