Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-27T08:32:42.356Z Has data issue: false hasContentIssue false

Isolation and identification of the high molecular weight saturated fatty acids of butterfat

Published online by Cambridge University Press:  01 June 2009

R. P. Hansen
Affiliation:
Fats Research Laboratory, Department of Scientific and Industrial Research, Wellington, New Zealand
F. B. Shorland
Affiliation:
Fats Research Laboratory, Department of Scientific and Industrial Research, Wellington, New Zealand
N. June Cooke
Affiliation:
Fats Research Laboratory, Department of Scientific and Industrial Research, Wellington, New Zealand

Extract

Butterfat has been shown to contain the normal odd-numbered saturated acids n-nonadecanoic acid (C19), n-heneicosanoic acid (C21), and n-tricosanoic acids (C23).

The presence of the normal even-numbered acids n-octadecanoic acid (C18), n-docosanoic acid (C22), n-tetracosanoic acid (C24) and n-hexacosanoic acid (C26) is conclusively established.

n-Eicosanoic acid (C20) formerly assumed to be present in butterfat has been isolated and identified by its physical and chemical properties.

Type
Original Articles
Copyright
Copyright © Proprietors of Journal of Dairy Research 1959

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1)Bosworth, A. W. & Sisson, E. W. (1934). J. biol. Chem. 107, 489.CrossRefGoogle Scholar
(2)Bosworth, A. W. & Brown, J. B. (1933). J. biol. Chem. 103, 115.CrossRefGoogle Scholar
(3)Helz, G. E. & Bosworth, A. W. (1936). J. biol. Chem. 116, 203.CrossRefGoogle Scholar
(4)Hilditch, T. P. (1947). The Chemical Constitution of Natural Fats, 2nd ed. London: Chapman and Hall.Google Scholar
(5)Francis, F. & Piper, S. H. (1939). J. Amer. chem. Soc. 61, 577.CrossRefGoogle Scholar
(6)James, A. T., Peeters, G. & Lauryssens, M. (1956). Biochem. J. 64, 726.CrossRefGoogle Scholar
(7)James, A. T. & Martin, A. J. P. (1956). Biochem. J. 63, 144.CrossRefGoogle Scholar
(8)Hawke, J. C. (1957). J. Dairy Res. 24, 366.CrossRefGoogle Scholar
(9)Hansen, R. P., Shorland, F. B. & Cooke, N. J. (1955). Chem. & Ind. p. 92.Google Scholar
(10)Shorland, F. B., Gerson, T. & Hansen, R. P. (1955). Biochem. J. 61, 702.CrossRefGoogle Scholar
(11)Shorland, F. B., Gerson, T. & Hansen, R. P. (1955). Biochem. J. 59, 350.CrossRefGoogle Scholar
(12)Hansen, R. P., Shorland, F. B. & Cooke, N. J. (1957). Nature, Lond., 179, 98.Google Scholar
(13)Hansen, R. P., Shorland, F. B. & Cooke, N. J. (1955). Nature, Lond., 176, 882.Google Scholar
(14)Hansen, R. P., Shorland, F. B. & Cooke, N. J. (1958). J. Sci. Fd Agric. 9, 391.CrossRefGoogle Scholar
(15)Hansen, R. P. & Shorland, F. B. (1952). Biochem. J. 50, 207.CrossRefGoogle Scholar
(16)Shorland, F. B. (1952). J. appl. Chem. 2, 438.CrossRefGoogle Scholar
(17)Stenhagen, E. & von Sydow, E. (1953). Arkiv. För. Kemi, Bd. 6, Nr. 29, 309.Google Scholar
(18)Dorinson, A., McCorkle, M. R. & Ralston, A. W. (1942). J. Amer. chem. Soc. 64, 2739.CrossRefGoogle Scholar
(19)Wyman, F. W. & Barkenbus, C. (1940). Ind. Engng Chem. (Anal. ed.), 12, 658.Google Scholar
(20)Hawke, J. C., Dunkley, W. L. & Hooker, C. N. (1957). N.Z. J. Sci. Tech. 38, 925.Google Scholar
(21)Weitkamp, A. W. (1945). J. Amer. chem. Soc. 67, 447.CrossRefGoogle Scholar
(22)Hilditch, T. P. (1937). Analyst, 62, 250.CrossRefGoogle Scholar
(23)Pollard, A., Chibnall, A. C. & Piper, S. H. (1931). Biochem. J. 25, 2111.CrossRefGoogle Scholar
(24)Smith, J. A. B. & Chibnall, A. C. (1932). Biochem. J. 26, 218.Google Scholar