Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-06T04:13:53.583Z Has data issue: false hasContentIssue false

The influence of the dissolved oxygen in milk on the stability of some vitamins towards heating and during subsequent exposure to sunlight

Published online by Cambridge University Press:  01 June 2009

J. E. Ford
Affiliation:
National Institute for Research in Dairying, Shinfield, Reading

Summary

Heat sterilization of milk destroyed about 50% of its folic acid activity, and subsequent exposure of the milk to sunlight caused a progressive further loss. This loss of folate, as of vitamin B12, was a consequence of the oxidative destruction of the milk's ascorbic acid, and was largely prevented by thorough exclusion of oxygen from the milk during heat processing and subsequent storage. With thiamine, riboflavin, nicotinic acid, vitamin B6 and biotin, stability towards heating and during exposure to sunlight was affected little, if at all, by the oxygen tension in the milk.

Type
Original Articles
Copyright
Copyright © Proprietors of Journal of Dairy Research 1967

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Barton-Wright, E. C. (1963). Practical Methods for the Microbiological Assay of the Vitamin B complex and Amino Acids. London: United Trade Press Ltd.Google Scholar
Biamonte, A. R. & Schneller, G. H. (1951). J. Am. pharm. Ass. Scient. Edn. 40, 313.CrossRefGoogle Scholar
Chapman, H. R., Ford, J. E., Kon, S. K., Thompson, S. Y., Rowland, S. J., Crossley, E. L. & Rothwell, J. (1957). J. Dairy Res. 24, 191.CrossRefGoogle Scholar
Clark, L. C. Jr. (1956). Trans. Am. Soc. artif. internal Organs 2, 41.Google Scholar
Deibel, R. H., Evans, J. B. & Niven, C. F. Jr. (1957). J. Bact. 74, 818.CrossRefGoogle Scholar
Ford, J. E. (1957). J. Dairy Res. 24, 360.CrossRefGoogle Scholar
Ford, J. E., Gregory, M. E., Porter, J. W. G. & Thompson, S. Y. (1953). 13th Int. Dairy Congr. The Hague, 3, 1282.Google Scholar
Gregory, M. E. (1954). Br. J. Nutr. 8, 340.CrossRefGoogle Scholar
Gregory, M. E. (1959). J. Dairy Res. 26, 203.CrossRefGoogle Scholar
Guthrie, E. S. (1946). J. Dairy Sci. 29, 359.CrossRefGoogle Scholar
Hand, D. B., Guthrie, E. S. & Sharp, P. F. (1938). Science, N.Y. 87, 439.CrossRefGoogle Scholar
Herbert, V. (1961). J. clin. Invest. 40, 81.CrossRefGoogle Scholar
Kon, S. K. & Watson, M. B. (1936). Biochem. J. 30, 2273.CrossRefGoogle Scholar
Lück, H. & Schillinger, A. (1959). Z. Lebensmittelunters. u.- Forsch. 110, 267.CrossRefGoogle Scholar
Matoth, Y., Pinkas, A. & Sroka, C. (1965). Am. J. clin. Nutr. 16, 356.CrossRefGoogle Scholar
Naiman, J. L. & Oski, F. A. (1964). Pediatrics, Springfield 34, 274.CrossRefGoogle Scholar