Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-22T14:04:37.506Z Has data issue: false hasContentIssue false

Influence of sodium chloride on the proteolysis of casein by rennet and by pepsin

Published online by Cambridge University Press:  01 June 2009

P. F. Fox
Affiliation:
Department of Dairy and Food Chemistry, University College, Cork, Irish Republic
B. F. Walley
Affiliation:
National Dairy Research Centre, the Agricultural Institute, Fermoy, Co. Cork, Irish Republic

Summary

1. Proteolysis of β-casein by rennin and by pepsin was completely inhibited in the presence of 10% NaCl and was very significantly reduced by 5% NaCl. The rate of proteolysis of αs-casein was maximal in the presence of 5–10% NaCl. 2. The inhibitory effect of NaCl on the proteolysis of β-casein was independent of pH and incubation temperature. 3. The effectiveness of NaCl in controlling the development of bitter flavour in Cheddar cheese may be due to its inhibitory effect on the proteolysis of β-casein. 4. Rennin hydrolysates of β-casein were bitter in flavour whereas those of αs-casein were not.

Type
Original Articles
Copyright
Copyright © Proprietors of Journal of Dairy Research 1971

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bang-Jensen, V., Foltmann, B. & Rombauts, W. (1964). C. r. Trav. Lab. Carlsberg 34, 326.Google Scholar
Czulak, J. (1959). Aust. J. Dairy Technol. 14, 177.Google Scholar
Emmons, D. B., Mcgugan, W. A., Elliott, J. A. & Morse, P. M. (1962). J. Dairy Sci. 45, 332.CrossRefGoogle Scholar
Fish, J. C. (1957). Nature, Lond. 180, 345.CrossRefGoogle Scholar
Fox, P. F. (1969). J. Dairy Sci. 52, 1214.CrossRefGoogle Scholar
Fox, P. F. (1970). J. Dairy Res. 37, 173.CrossRefGoogle Scholar
Gordon, D. F. Jr & Speck, M. L. (1965 a). J. Dairy Sci. 48, 499.CrossRefGoogle Scholar
Gordon, D. F. Jr & Speck, M. L. (1965 b). Appl. Microbiol. 13, 537.CrossRefGoogle Scholar
Hipp, N. J., Groves, M. L., Custer, J. H. & Mcmeekin, T. L. (1952). J. Dairy Sci. 35, 272.Google Scholar
Lawrence, R. C. & Gilles, J. (1969). N.Z. Jl Dairy Technol. 4, 189.Google Scholar
Ledford, R. A., Chen, J. H. & Nath, K. R. (1968). J. Dairy Sci. 51, 792.Google Scholar
Ledford, R. A., O'sullivan, A. C. & Nath, K. R. (1966). J. Dairy Sci. 49, 1098.CrossRefGoogle Scholar
Lindqvist, B. & StorgÅrds, T. (1959 a). 15th Int. Dairy Congr., London 2 679.Google Scholar
Lindqvist, B. & StorgÅrds, T. (1959 b). Acta chem. scand. 13, 1839.Google Scholar
Lindqvist, B. & StorgÅrds, T. (1960). Acta chem. scand. 14, 575.Google Scholar
Lindqvist, B. & StorgÅrds, T. (1962). 16th Int. Dairy Congr., Copenhagen B, 665.Google Scholar
Loftus Hills, G. (1970). Paper read to Queensland Division of the A.I.D.F.M.SGoogle Scholar
Motaba, T., Nagayasu, C., Hayashi, R. & Hata, T. (1969). Agric. biol. Chem. 33, 1662.CrossRefGoogle Scholar
Schormuller, J. (1968). Adv. Fd Res. 16, 231.CrossRefGoogle Scholar
Stadhouders, J. (1962). 16th Int. Dairy Congr., Copenhagen B, 353.Google Scholar
Thompson, M. P., Kiddy, C. A., Johnston, J. O. & Weinberg, R. M. (1964). J. Dairy Sci. 47, 378.CrossRefGoogle Scholar
Zittle, C. A. & Custer, J. H. (1963). J. Dairy Sci. 46, 1183.Google Scholar