Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-26T13:48:59.009Z Has data issue: false hasContentIssue false

Influence of pulsationless milking on teat canal keratin growth and turnover

Published online by Cambridge University Press:  01 June 2009

S. Jane Lacy-Hulbert
Affiliation:
Dairying Research Corporation Ltd, Private Bag 3123, Ruakura, Hamilton, New Zealand
J. Eric Hillerton
Affiliation:
Institute for Animal Health, Compton Laboratory, Compton, Newbury RG20 7NN, UK
Murray W. Woolford
Affiliation:
Dairying Research Corporation Ltd, Private Bag 3123, Ruakura, Hamilton, New Zealand

Summary

In two separate experiments, the effects of pulsationless milking and milking vacuum on the rate of keratin removal from the teat canal were determined. Sixteen cows were milked with or without pulsation for either a single milking or for eight milkings. Milking without pulsation removed 10% of keratin present before milking, significantly less than milking with pulsation, which removed 32%. After eight milkings (4 d) without pulsation, up to 20% more keratin had accumulated within the teat canal but the rate of keratin regeneration reduced significantly upon return to pulsation milking. In a second experiment, ten cows were milked at 45 or 55 kPa and with or without pulsation. Only the absence of pulsation significantly reduced keratin loss during milking. Keratin loss during milking appears to be controlled by liner compression rather than by the rate of milk flowing through the teat canal. Pulsationless milking may increase penetrability of the teat canal to bacteria by reducing the natural rate of keratin removal during milking and reducing the rate of keratin regeneration.

Type
Original Articles
Copyright
Copyright © Proprietors of Journal of Dairy Research 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Baxter, E. S., Clarke, P. M., Dodd, F. H. & Foot, A. S. 1950 Factors affecting the rate of machine milking. Journal of Dairy Research 17 117127CrossRefGoogle Scholar
Bitman, J., Wood, D. L., Bright, S. A., Miller, R. H., Capuco, A. V., Roche, A. & Pankey, J. W. 1991 Lipid composition of teat canal keratin collected before and after milking from Holstein and Jersey cows. Journal of Dairy Science 74 414420CrossRefGoogle ScholarPubMed
Bramley, A. J., Griffin, T. K. & Grindal, R. J. 1978 Some investigations on the effect of continuous vacuum milking on new infection of the udder. Proceedings, Annual Meeting, National Mastitis Council 17 291300Google Scholar
Bramley, A. J. & Schultze, W. D. 1991 Effect of milking without pulsation on teat duct colonization with Streptococcus agalactiae and penetrability to endotoxin. Journal of Dairy Science 74 29822988CrossRefGoogle ScholarPubMed
Bright, S. A., Bitman, J., Capuco, A. V., Wood, D. L. & Miller, R. H. 1990 Methods of collection and lipid composition of teat canal keratin in dry and lactating cows. Journal of Dairy Science 73 98106CrossRefGoogle ScholarPubMed
Bullough, W. S. 1962 Growth control in mammalian skin. Nature 193 520523CrossRefGoogle ScholarPubMed
Butler, M. C., Allen, C. J. & Hillerton, J. E. 1990 Methods of measuring and calculating milking performance of cows. Journal of Agricultural Engineering Research 46 245257Google Scholar
Butler, M. C., Hillerton, J. E. & Grindal, R. J. 1992 The control of milk flow through the teats of dairy cows. Journal of Dairy Science 75 10191024CrossRefGoogle ScholarPubMed
Capuco, A. V., Bright, S. A., Pankey, J. W., Wood, D. L., Miller, R. H. & Bitman, J. 1992 Increased susceptibility to intramammary infection following removal of teat canal keratin. Journal of Dairy Science 75 21262130CrossRefGoogle ScholarPubMed
Capuco, A. V., Mein, G. A., Nickerson, S. C., Jack, L. J. W., Wood, D. L., Bright, S. A., Aschenbrenner, R. A., Miller, R. H. & Bitman, J. 1994 Influence of pulsationless milking on teat canal keratin and mastitis. Journal of Dairy Science 77 6474CrossRefGoogle ScholarPubMed
Capuco, A. V., Wood, D. L., Bright, S. A., Miller, R. H. & Bitman, J. 1990 Regeneration of teat canal keratin in lactating dairy cows. Journal of Dairy Science 73 17451750CrossRefGoogle ScholarPubMed
Collins, R. A., Parsons, K. R., Field, T. R. & Bramley, A. J. 1988 Histoehemical localization and possible antibacterial role of xanthine oxidase in the bovine mammary gland. Journal of Dairy Research 55 2532CrossRefGoogle Scholar
Du Preez, J. H. 1985 Teat canal infections. Kieler Milchwirtschaftliche Forshungberichte 37 267273Google Scholar
Grindal, R. J., Walton, A. W. & Hillerton, J. E. 1991 Influence of milk flow rate and streak canal length on new intramammary infection in dairy cows. Journal of Dairy Research 58 383388Google Scholar
Hibbitt, K. G., Cole, C. B. & Reiter, B. 1969 Antimicrobial proteins isolated from the teat canal of the cow. Journal of General Microbiology 56 365371CrossRefGoogle ScholarPubMed
Hogan, J. S., Pankey, J. W. & Duthie, A. H. 1987 Growth inhibition of mastitis pathogens by long-chain fatty acids. Joirnal of Dairy Science 70 927934CrossRefGoogle ScholarPubMed
Hogan, J. S., Smith, K. L., Todhunter, D. A. & Schoenberger, P. S. 1988 Growth responses of environmental mastitis pathogens to long-chain fatty acids. Journal of Dairy Science 71 245249CrossRefGoogle ScholarPubMed
Kligman, A. M. 1964 The biology of the stratum eorneum. In The Epidermis, pp. 387433 (Eds Montagna, W. and Lobitz, W. C.). London: Academic PressCrossRefGoogle Scholar
Lacy-Hulbert, S. J. 1993 Mastitis and the Role of the Bovine Teat Canal. PhD thesis, University of Reading, UKGoogle Scholar
Lacy-Hulbert, S. J. & Hillerton, J. E. 1995 Physical characteristics of the bovine teat canal and their influence on susceptibility to streptococcal infection. Journal of Dairy Research 62 395404CrossRefGoogle ScholarPubMed
McDonald, J. S. 1971 Microscopic observations of teat canals from susceptible and resistant bovine mammary glands. A preliminary report. Proceedings, Vlth International Conference on Cattle Diseases, Pennsylvania, 1970 97103Google Scholar
Mein, G. A., Brown, M. R. & Williams, D. M. 1986 Effects on mastitis of overmilking in conjunction with pulsation failure. Journal of Dairy Research 53 1722CrossRefGoogle ScholarPubMed
Mein, G. A., Williams, D. M. & Thiel, C. C. 1987 Compressive load applied by the teatcup liner to the bovine teat. Journal of Dairy Research 54 327337Google Scholar
Murdough, P. A., Martus, N. S., Mazzola, G. J., Salamun, D. M., Scudder, P. J., Urbano, M. A. & Pankey, J. W. 1991 In vitro growth studies of mastitis pathogens on teat canal keratin. Journal of Dairy Science 74 (Suppl. 1) 204 (Abstr. P186)Google Scholar
O'Brien, B. 1989 Teat canal penetrability and mastitis. Farm and Food Research 20 (4) 67Google Scholar
Pankey, J. W., Murdough, P. A., Wood, D. L., Capuco, A. V. & Bitman, J. 1995 A model for mastitis pathogen growth studies on teat canal keratin. Proceedings, 3rd IDF International Mastitis Seminar, Tel-Aviv S-2 4246Google Scholar
Reitsma, S. Y., Cant, E. J., Grindal, R. J., Westgarth, D. R. & Bramley, A. J. 1981 Effect of duration of teatcup liner closure per pulsation cycle on bovine mastitis. Journal of Dairy Science 64 22402245CrossRefGoogle Scholar
Trinidad, P., Nickerson, S. C. & Alley, T. K. 1990 Prevalence of intramammary infection and teat canal colonization in unbred and primigravid dairy heifers. Journal of Dairy Science 73 107114Google Scholar
Williams, D. M. 1984 A Study of the Epithelium of the Bovine Teat Canal. PhD thesis, University of Melbourne, AustraliaGoogle Scholar
Williams, D. M. & Mein, G. A. 1985 The role of machine milking in the invasion of mastitis organisms and implications for maintaining low infection rates. Kieler Milchwirtschaftliche Forschungsberichte 37 415425Google Scholar
Williams, D. M. & Mein, G. A. 1987 Closing forces of the bovine teat canal. Journal of Dairy Research 54 321325Google Scholar
Woolford, M. W., Phillips, D. S. M. & Twomey, A. 1978 A comparison of mastitis infection rates using a conventional intermittent milk flow and a continuous milk flow under conditions of an elevated standard bacterial challenge. Proceedings, Annual Meeting, National Mastitis Council 17 275290Google Scholar