Hostname: page-component-5f745c7db-rgzdr Total loading time: 0 Render date: 2025-01-07T04:39:22.096Z Has data issue: true hasContentIssue false

In vitro proteolysis and functional properties of reductively alkylated β-casein derivatives

Published online by Cambridge University Press:  01 June 2009

Jean-Marc Chobert
Affiliation:
Institut National de la Recherche Agronomique, Laboratoire d'Etude des Interactions des Molécules Alimentaires, BP 527, 44026 Nantes Cédex 03, France
Abdelmadjid Touati
Affiliation:
Institut National de la Recherche Agronomique, Laboratoire d'Etude des Interactions des Molécules Alimentaires, BP 527, 44026 Nantes Cédex 03, France
Catherine Bertrand-Harb
Affiliation:
Institut National de la Recherche Agronomique, Laboratoire d'Etude des Interactions des Molécules Alimentaires, BP 527, 44026 Nantes Cédex 03, France
Michele Dalgalarrondo
Affiliation:
Institut National de la Recherche Agronomique, Laboratoire d'Etude des Interactions des Molécules Alimentaires, BP 527, 44026 Nantes Cédex 03, France
Marie-Georgette Nicolas
Affiliation:
Institut National de la Recherche Agronomique, Laboratoire d'Etude des Interactions des Molécules Alimentaires, BP 527, 44026 Nantes Cédex 03, France
Tomasz Haertle
Affiliation:
Institut National de la Recherche Agronomique, Laboratoire d'Etude des Interactions des Molécules Alimentaires, BP 527, 44026 Nantes Cédex 03, France

Summary

β-Casein amino groups were modified with aldehydes and dialdehydes via reductive alkylation at pH 8·0. The degree of alkylation was controlled by the amount of the alkylating reagent applied. The initial rates of α-chymotrypsin-catalysed hydrolysis of alkylated β-casein were inversely related to the size of the modifying group. Proteolysis of modified β-casein with trypsin (18 h) or with α-chymotrypsin (48 h) depended on the nature and size of the substituent applied. The measurements of tryptophan fluorescence indicate that the modifications also induced conformation change. Solubilities of methyl-, ethyl- or benzyl-β-casein slightly increased; solubilities of β-casein dialdehyde derivatives were significantly lower than that of native β-casein. Emulsion stability of methyl- or ethyl- β-casein was higher than that of native β-casein in the acidic pH range. After modification with glyoxal, the emulsifying activity and the emulsion stability of β-casein decreased. The emulsifying activity of benzyl- β-casein was lower than that of native β-casein. Phthalylated β-casein displayed the poorest emulsion stability.

Type
Original Articles
Copyright
Copyright © Proprietors of Journal of Dairy Research 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Adler-Nissen, J. & Olsen, H. S. 1979 The influence of peptide chain length on taste and functional properties of enzymatically modified soy protein. In Functionality and Protein Structure pp. 125146 (Ed. Pour-El, A.) Washington, DC: American Chemical Society (ACS Symposium Series 92)CrossRefGoogle Scholar
Bertrand-Harb, C., Charrier, B., Dalgalarrondo, M., Chobert, J. M. & Haertlé, T. 1990 Condensation of glycosidic and aromatic structures on amino groups of β-lactoglobulin B via reductive alkylation. Solubility and emulsifying properties of the protein derivatives. Lait 71 205215CrossRefGoogle Scholar
Bidligmeyer, B. A., Cohen, S. A. & Tarvin, T. L. 1984 Rapid analysis of amino acids using pre-column derivatization. Journal of Chromatography 336 93104CrossRefGoogle Scholar
Chobert, J. M. & Mesnier, D. 1988 [Functional properties of food proteins: improvement through chemical modification.] In Propriétés Fonctionnelles des Macromolécules Alimentaires pp. 175198. Paris: Technique et Documentation Lavoisier (Les Cahiers de L'ENS. BANA 6)Google Scholar
Chobert, J. M., Touati, A., Bertrand-Harb, C., Dalgalarrondo, M., Nicolas, M.-G. & Haertlé, T. 1990 Ethyl-substituted β-casein. Study of differences between esterified and reductively alkylated β-casein derivatives. Journal of Agricultural and Food Chemistry 38 13211326CrossRefGoogle Scholar
Feeney, R. E. 1987 Chemical modification of proteins: comments and perspectives. International Journal of Peptide and Protein Research 29 145161CrossRefGoogle Scholar
Graham, D. E. & Phillips, M. C. 1979 Proteins at liquid interfaces. 2. Adsorption isotherms. Journal of Colloid and Interface Science 70 415426CrossRefGoogle Scholar
Graham, D. E. & Phillips, M. C. 1980 Proteins at liquid interfaces. 5. Shear properties. Journal of Colloid and Interface Science 76 240250CrossRefGoogle Scholar
Iung, C. & Linden, G. 1988 [Functional properties of food proteins: Improvement through enzymatic modification.] In Propriétés Fonctionnelles des Macromolécules Alimentaires pp. 199223. Paris: Technique et Documentation Lavoisier (Les Cahiers de l'ENS. BANA 6)Google Scholar
Janus, J. W., Kenchington, A. W. & Ward, A. G. 1951 A rapid method for the determination of the isoelectric point of gelatin using mixed bed deionization. Research 4–5 247248Google Scholar
Jimenez-Flores, R. & Richardson, T. 1987 Effects of chemical, genetic and enzymatic modifications on protein functionality. In Food Biotechnology-1 pp. 87137 (Eds King, R. D. and Cheetham, P. S. J.) London: Applied ScienceCrossRefGoogle Scholar
Kato, A. & Nakai, S. 1980 Hydrophobicity determined by a fluorescence probe method and its correlation with surface properties of proteins. Biochimica et Biophysica Acta 624 1320CrossRefGoogle ScholarPubMed
Kilara, A. & Sharkasi, T. Y. 1986 Effects of temperature on food proteins and its implications on functional properties. CRC Critical Reviews in Food Science and Nutrition 23 323395CrossRefGoogle ScholarPubMed
Kim, K. S. & Rhee, J. S. 1990 Effect of acetylation on emulsifying properties of glycinin. Journal of Agricultural and Food Chemistry 38 669674CrossRefGoogle Scholar
Kim, S. Y., Park, P. S.-W. & Rhee, K. C. 1990 Functional properties of proteolytic enzyme modified soy protein isolate. Journal of Agricultural and Food Chemistry 38 651656CrossRefGoogle Scholar
Kinsella, J. E. 1976 Functional properties of proteins in foods: a survey. CRC Critical Reviews in food Science and Nutrition 7 219280CrossRefGoogle Scholar
Kinsella, J. E. & Shetty, K. J. 1979 Chemical modification for improving functional properties of plant and yeast proteins. In Functionality and Protein Structure pp. 3763 (Ed. Pour-El, A.) Washington, DC: American Chemical Society (ACS Symposium Series 92)CrossRefGoogle Scholar
Klemaszewski, J. L., Das, K. P., Kang, Y. J. & Kinsella, J. E. 1990 Effects of controlled sulfitolysis of bovine serum albumin on droplet size and surface area of emulsions. Journal of Agricultural and Food Chemistry 38 647650CrossRefGoogle Scholar
Lakowicz, J. R. 1983 In Principles of Fluorescence Spectroscopy pp. 244245. New York: Plenum PressCrossRefGoogle Scholar
Lowry, O. H., Rosebrough, N. J., Farr, A. L. & Randall, R. S. 1951 Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry 193 265275CrossRefGoogle ScholarPubMed
Mattarella, N. L., Creamer, L. K. & Richardson, T. 1983 Amidation or esterification of bovine β-lactoglobulin to form positively charged proteins. Journal of Agricultural and Food Chemistry 31 968972CrossRefGoogle Scholar
Mattarella, N. L. & Richardson, T. 1983 Physicochemical and functional properties of positively charged derivatives of bovine β lactoglobulin. Journal of Agricultural and Food Chemistry 31 972978CrossRefGoogle Scholar
Means, G. E. & Feeney, R. E. 1968 Reductive alkylation of amino groups in proteins. Biochemistry 7 21922201CrossRefGoogle ScholarPubMed
Mercier, J. G., Maubois, J. L., Poznanski, S. & Ribadeau, Dumas B. 1968 [Preparative fractionation of cow and sheep caseins by chromatography on DEAE-cellulose with urea and 2-mercaptoethanol.] Bulletin de la Société de Chimie Biologique 50 521530Google ScholarPubMed
Pearce, K. N. & Kinsella, J. E. 1978 Emulsifying properties of proteins: evaluation of a turbidimetric technique. Journal of Agricultural and Food. Chemistry 26 716723CrossRefGoogle Scholar
Sen, L. C., Lee, H. S., Feeney, R. E. & Whitaker, J. R. 1981 In vitro digestibility and functional properties of chemically modified casein. Journal of Agricultural and Food Chemistry 29 348354CrossRefGoogle ScholarPubMed
Shukla, T. P. 1982 Chemical modification of food proteins. In Food Protein Deterioration: Mechanisms and Functionality p. 275 (Ed. Cherry, J. P.) Washington, DC: American Chemical SocietyCrossRefGoogle Scholar
Slattery, C. W. 1976 Casein micelle structure; an examination of models. Journal of Dairy Science 59 15471556CrossRefGoogle ScholarPubMed
Smith, P. K., Krohn, R. T., Hermanson, G. T., Mallia, A. K., Gartner, F. H., Provenzano, M. D., Fujimoto, E. K., Goeke, N. M., Olson, B. J. & Klenk, D. C. 1985 Measurement of protein using bicinchoninic acid. Analytical Biochemistry 150 7685CrossRefGoogle ScholarPubMed
Swaisgood, H. E. 1982 Chemistry of milk protein. In Developments in Dairy Chemistry 1. Proteins pp. 159 (Ed. Fox, P. F.). London: Applied ScienceGoogle Scholar
Turro, N. J. 1978 In Modern Molecular Photochemistry pp. 110114. Menlo Park, CA: The Benjamin/CummingsGoogle Scholar
Whitaker, J. R. & Puigserver, A. J. 1982 Fundamentals and applications of enzymatic modifications of proteins – an overview. In Modifications of Proteins: Food, Nutritional and Pharmacological Aspects pp. 5787 (Eds Feeney, R. E. and Whitaker, J. R.) Washington, DC: American Chemical Society (Advances in Chemistry Series 198)CrossRefGoogle Scholar
Zittle, C. A. & Custer, J. H. 1963 Purification and some of the properties of αs-casein and K-casein. Journal of Dairy Science 46 11831188CrossRefGoogle Scholar