Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-22T08:54:13.675Z Has data issue: false hasContentIssue false

Heat-induced changes in sulphydryl and disulphide levels of β-lactoglobulin A and the formation of polymers

Published online by Cambridge University Press:  01 June 2009

K. Watanabe
Affiliation:
Institut für Chemie der Bundesanstalt für Milchforschung, D 2300 Kiel, FRG
H. Klostermeyer
Affiliation:
Institut für Chemie der Bundesanstalt für Milchforschung, D 2300 Kiel, FRG

Summary

The effects of heat and pH on sulphydryl (–SH) and disulphide (–SS–) groups of β-lactoglobulin (β-lg) A have been studied by heating at different temperatures and pH values in air and at pH 6·9 in the absence of air. At pH 6·9 under aerobic conditions a decrease of –SH groups and an increase of –SS– groups was observed with increasing time and temperature. Only small changes were found under anaerobic conditions. At pH from 3·0 to 9·8 the –SH level decreased while the –SS– level increased up to pH 6·9 and then dropped rapidly. In addition to –SH/–SS– interchange there were reactions to other sulphur-containing compounds as seen from the losses in the total amount of –SH plus –SS– sulphur. The results of gelchromatographic investigations suggest that –SH-initiated –SS– exchange-reactions play an important role in the formation of high molecular weight polymers of β-lg A during heat treatment, and that the formation of intermediates depends on the presence of air.

Type
Original Articles
Copyright
Copyright © Proprietors of Journal of Dairy Research 1976

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Armstrong, J. McD., McKenzie, H. A. & Sawyer, W. H. (1967). Biochimica et Biophysica Acta 147, 60.CrossRefGoogle Scholar
Asquith, R. S. & Carthew, P. (1972). Biochimica et Biophysica Acta 278, 8.CrossRefGoogle Scholar
Boyd, E. N. & Gould, I. A. (1957). Journal of Dairy Science 40, 1294.CrossRefGoogle Scholar
Briggs, D. R. & Hull, R. (1945). Journal of the American Chemical Society 67, 2007.CrossRefGoogle Scholar
Dill, C. W., Roberts, W. M. & Aurand, L. W. (1962). Journal of Dairy Science 45, 1332.CrossRefGoogle Scholar
Dupont, M. (1965). Biochimica et Biophysica Acta 94, 573.CrossRefGoogle Scholar
Gough, P. & Jenness, R. (1962). Journal of Dairy Science 45, 1033.CrossRefGoogle Scholar
Horn, M. J., Jones, D. B. & Ringel, S. J. (1941). Journal of Biological Chemistry 138, 141.CrossRefGoogle Scholar
Hutton, J. T. & Patton, S. (1952). Journal of Dairy Science 35, 699.CrossRefGoogle Scholar
Jenness, R. (1954). Journal of Agricultural and Food Chemistry 2, 75.CrossRefGoogle Scholar
Kiermeier, F. & Hamed, M. G. E. (1961). Zeitschrift für Lebensmitteluntersuchung und -Forschung 115, 322.CrossRefGoogle Scholar
Kleyn, D. H. & Shipe, W. F. Jr (1961). Journal of Dairy Science 44, 1603.CrossRefGoogle Scholar
Larson, B. L. & Jenness, R. (1950). Journal of Dairy Science 33, 896.CrossRefGoogle Scholar
Larson, B. L. & Jenness, R. (1952). Journal of the American Chemical Society 74, 3090.CrossRefGoogle Scholar
Lyster, R. L. J. (1964). Journal of Dairy Research 31, 41.CrossRefGoogle Scholar
McKenzie, H. A. (1967). Advances in Protein Chemistry 22, 55.CrossRefGoogle Scholar
McKenzie, H. A. & Ralston, G. B. (1973). Biochemistry 12, 1025.CrossRefGoogle Scholar
Mrowetz, G. & Klostermeyer, H. (1972 a). Zeitschrift für Lebensmitteluntersuchung und -Forschung 149, 74.CrossRefGoogle Scholar
Mrowetz, G. & Klostermeyer, H. (1972 b). Zeitschrift für Lebensmitteluntersuchung und -Forschung 149, 134.CrossRefGoogle Scholar
Mrowetz, G., Klostermeyer, H. & Thomasow, J. (1972). Zeitschrift für Lebensmitteluntersuchung und Forschung 149, 341.CrossRefGoogle Scholar
Nakanishi, T. & Wada, Y. (1972). Japanese Journal of Dairy Science 21, A-107.Google Scholar
Pofahl, T. R. & Vakaleris, D. G. (1968). Journal of Dairy Science 51, 1345.CrossRefGoogle Scholar
Roels, H., Préaux, G. & Lontie, R. (1971). Biochimie 53, 1085.CrossRefGoogle Scholar
Roels, H., Préaux, G. & Lontie, R. (1973). Biochimie 55, 421.CrossRefGoogle Scholar
Rose, D. (1963). Dairy Science Abstracts 25, 45.Google Scholar
Samuelsson, E.-G. & Borgström, S. (1973). Milchwissenschaft 28, 25.Google Scholar
Sasago, K., Wilson, H. K. & Herreid, E. O. (1963). Journal of Dairy Science 46, 1348.CrossRefGoogle Scholar
Sawyer, W. H. (1968). Journal of Dairy Science 51, 323.CrossRefGoogle Scholar
Sawyer, W. H. (1969). Journal of Dairy Science 52, 1347.CrossRefGoogle Scholar
Sawyer, W. H., Coulter, S. T. & Jenness, R. (1963). Journal of Dairy Science 46, 564.CrossRefGoogle Scholar
Slater, E. C. (1952). Nature 170, 970.CrossRefGoogle Scholar
Trautman, J. C. & Swanson, A. M. (1959). Journal of Dairy Science 42, 895.CrossRefGoogle Scholar
Yoshino, U., Wilson, H. K. & Herreid, E. O. (1962). Journal of Dairy Science 45, 1459.CrossRefGoogle Scholar