Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2025-01-01T17:14:41.606Z Has data issue: false hasContentIssue false

Heat stability of milk

Published online by Cambridge University Press:  01 June 2009

Donald F. Darling
Affiliation:
Unilever Research Laboratory, Sharnbrook, Bedfordshire

Summary

The heat stability of a standard reconstituted skim-milk preparation has been investigated as a function of pH, temperature of coagulation, and forewarming treatment. Apparent activation energies have been calculated from the temperature dependence of coagulation time, and a constant value of 144 kJ/mole has been found for milks between pH 6·6 and 6·9. The effect of forewarming resulted in a decrease in stability at the most acid pH values, a slight increase at higher pH but below the pH maximum, and a decrease in the region of the pH minimum. A working hypothesis is proposed for the mechanisms leading to the coagulation of milk at elevated temperatures, based upon Ca induced precipitation of casein, protein polymerization, β-lactoglobulin: κ-casein interaction, and precipitation of insoluble Ca phosphates.

Type
Original Articles
Copyright
Copyright © Proprietors of Journal of Dairy Research 1980

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Andrews, A. T. (1975). Journal of Dairy Research 42, 8999.Google Scholar
Boulet, M. & Rose, D. (1954). Journal of Dairy Research 21, 229237.CrossRefGoogle Scholar
Bull, H. B. (1946). Journal of the American Chemical Society 68, 745747.Google Scholar
Cheeseman, G. C. & Knight, D. (1974). Journal of Dairy Research 41, 359366.Google Scholar
Davies, D. T. & White, J. C. D. (1966). Journal of Dairy Research 33, 6781.CrossRefGoogle Scholar
Fox, P. F. & Morrissey, P. A. (1977). Journal of Dairy Research 44, 627646.Google Scholar
Hartman, G. H. Jr & Swanson, A. M. (1962). Journal of Dairy Science 45, 657.Google Scholar
Howat, G. R. & Wright, N. C. (1934). Biochemical Journal 28, 13361345.Google Scholar
Klostermeyer, H. (1976). Molkerei-Zeitung 30, 818824.Google Scholar
Koops, J. & Westerbeek, D. (1970). Netherlands Milk and Dairy Journal 24, 5260.Google Scholar
Long, J. E., Van Winkle, Q. & Gould, I. A. (1963). Journal of Dairy Science 46, 13291334.Google Scholar
Mckenzie, H. A. (1971). Milk Proteins, Vol. II, pp. 257330. (Ed. McKenzie, H. A..) New York: Academic Press.Google Scholar
Miller, P. G. & Sommer, H. H. (1940). Journal of Dairy Science 23, 405421.Google Scholar
Muir, D. D. & Sweetsur, A. W. M. (1977). Journal of Dairy Research 44, 249257.Google Scholar
Parker, T. G. & Dalgleish, D. G. (1977). Journal of Dairy Research 44, 8592.Google Scholar
Pyne, G. T. (1962). Journal of Dairy Research 29, 101130.Google Scholar
Rose, D. (1962). Journal of Dairy Science 45, 13051311.Google Scholar
Rose, D. (1963). Dairy Science Abstracts 25, 4552.Google Scholar
Sawyer, W. H. (1969). Journal of Dairy Science 52, 13471355.Google Scholar
Sweetsur, A. W. M. & White, J. C. D. (1974). Journal of Dairy Research 41, 349358.Google Scholar
Sweetsur, A. W. M. & White, J. C. D. (1975 a). Journal of Dairy Research 42, 5771.Google Scholar
Sweetsur, A. W. M. & White, J. C. D. (1975 b). Journal of Dairy Research 42, 7388.Google Scholar
White, J. C. D. & Sweetsur, A. W. M. (1977). Journal of Dairy Research 44, 237247.Google Scholar
Zittle, C. A. & Dellamonica, E. S. (1956). Journal of Dairy Science 39, 514521.Google Scholar
Zittle, C. A., Dellamonica, E. S. & Ouster, J. H. (1956). Journal of Dairy Science 39, 16511659.Google Scholar
Zittle, C. A., Dellamonica, E. S., Rudd, R. K. & Ouster, J. H. (1957). Journal of the American Chemical society 79, 46614666.Google Scholar