Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2025-01-05T19:23:33.978Z Has data issue: false hasContentIssue false

Growth of morel mushroom mycelium in cheese whey

Published online by Cambridge University Press:  01 June 2009

Naim Kosaric
Affiliation:
Chemical and Biochemical Engineering, Faculty of Engineering Science, University of Western Ontario, London, Ontario, Canada, N6A 5B9
Nabuo Miyata
Affiliation:
Chemical and Biochemical Engineering, Faculty of Engineering Science, University of Western Ontario, London, Ontario, Canada, N6A 5B9

Summary

Cheese whey was used as substrate for submerged cultivation of 8 strains of 6 species of edible mushrooms (morel mushroom): Morchella crassipes (3 strains), M. angusticeps, M. rotunda, M. deliciosa, M. esculenta and an unidentified Morchella sp. Best growth of morel mushroom mycelium was obtained with one of the M. crassipes strains. The optimum growth conditions for the selected mycelium were as follows: initial pH, ~ 5·0–5·5; temperature, 25–28°C; inoculum size, 150–250 mg mycelium/100 ml whey; N sources: peptone and yeast extract; trace elements: K and Fe. More than 20 g/l mycelium was harvested in the form of pellets. Some growth kinetics studies were also performed. The initial carbohydrate (lactose) content was reduced from 5 to 0·4% at the end of the cultivation period. The specific growth rate of M. crassipes ATCC 13227 was from 1.0 to 6·4 x 10–2, depending on the growth phase. The harvested biomass contained about 45% protein, 5% fat and 8·5% ash (on a dry-weight basis). Essential amino acid content was comparable to the FAO standard, except for methionine, and unsaturated fatty acids predominated in the fat. The results with whey are compared with previously reported data on morel mushroom mycelium growth on waste sulphite liquors.

Type
Original Articles
Copyright
Copyright © Proprietors of Journal of Dairy Research 1981

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Atkin, C., Witter, L. D. & Ordal, Z. J. (1967). Applied Microbiology 15, 13391344.CrossRefGoogle Scholar
Bechtle, R. M. & Claydon, T. J. (1971). Journal of Dairy Science 54, 15951604.CrossRefGoogle Scholar
Brock, T. D. (1951). Mycologia 43, 402422.CrossRefGoogle Scholar
Carroll, K. K., Cutts, J. H. & Murray, E. G. D. (1968). Canadian Journal of Biochemistry 46, 899904.CrossRefGoogle Scholar
Cirillo, V. P., Hardwick, W. A. & Seeley, R. D. (1960). U.S. Patent no. 2928210.Google Scholar
Falanghe, H., Smith, A. K. & Rackis, J. J. (1964). Applied Microbiology 12, 330334.CrossRefGoogle Scholar
Fron, M. G. (1905). Comples Rendus Hebdomadaires des Séances de l'Académie des Sciences 140, 11871189.Google Scholar
Furman, N. H. (Ed.) (1962). Standard Methods of Chemical Analysis, 6th edn. New York: Van Nostrand.Google Scholar
Gilbert, F. A. (1960). Mycologia 52, 201209.CrossRefGoogle Scholar
Heinemann, B. (1963). U. S. Patent no. 3086320.Google Scholar
Jacobs, M. B. (1958). The chemical analysis of food and food products, 3rd edn. New York: Van Nostrand.Google Scholar
Janardhanan, K. K., Kaul, T. N. & Husain, A. (1970). Journal of Food Science and Technology 7, 197199.Google Scholar
Kosaric, N. (1969). Thesis, University of Western Ontario, London, Canada.Google Scholar
Kosaric, N., Leduy, A. & Zajic, J. E. (1973). Canadian Journal of Chemical Engineering 51, 186190.CrossRefGoogle Scholar
Litchfield, J. H. (1967 a). Biotechnology and Bioengineering 9, 289304.CrossRefGoogle Scholar
Litchfield, J. H. (1967 b). In Microbial Technology pp. 107144. (Ed. Peppler, H. J..) New York: Reinhold.Google Scholar
Litchfield, J. H. & Overbeck, R. C. (1962). Proceedings, 1st International Congress of Food Science and Technology, London 2, 511520. New York: Gordon and Breach.Google Scholar
Litchfield, J. H., Overbeck, R. C. & Davidson, R. S. (1963 a). Journal of Agricultural and Food Chemistry 11, 158162.CrossRefGoogle Scholar
Litchfield, J. H., Vely, V. G. & Overbeck, R. C. (1963 b). Journal of Food Science 28, 741743.CrossRefGoogle Scholar
Morris, D. L. (1948). Science 107, 254255.CrossRefGoogle Scholar
Reusser, F., Spencer, J. F. T. & Sallans, H. R. (1958). Applied Microbiology 6, 14.CrossRefGoogle Scholar
Szuecs, J. (1956). U. S. Patent no. 2761246.Google Scholar
Vananuvat, P. & Kinsella, J. E. (1975 a). Journal of Food Science 40, 336341.CrossRefGoogle Scholar
Vananuvat, P. & Kinsella, J. E. (1975 b). Journal of Food Science 40, 823825.CrossRefGoogle Scholar
Wasserman, A. E. (1960). Journal of Dairy Science 43, 12311234.CrossRefGoogle Scholar
Wasserman, A. E. (1961). Journal of Dairy Science 44, 379386.CrossRefGoogle Scholar