Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-08T09:12:54.732Z Has data issue: false hasContentIssue false

Glycoproteins in the heat- and acid-stable fraction of ovine milk

Published online by Cambridge University Press:  01 June 2009

Efstathios Alichanidis
Affiliation:
Laboratory of Dairy Technology, University of Thessaloniki, 54006 Thessaloniki, Greece
Alexandra-Maria Michaelidou
Affiliation:
Laboratory of Dairy Technology, University of Thessaloniki, 54006 Thessaloniki, Greece

Summary

Affinity chromatography on a concanavalin A–Sepharose support was used to isolate two glycoprotein fractions from a heat- and acid-stable fraction of ovine milk. One of these glycoprotein fractions was purified by rechromatography on DEAE-cellulose to essentially a pure protein yielding a single band on gel electro-phoresis. The apparent Mr of this glycoprotein (GP2) as estimated by electrophoresis was 50500. It contained 8·88% carbohydrate and 0·61% P. The other glycoprotein fraction (GP3) contained 0·53% P and 17·76% carbohydrate including sialic acid, mannose, galactose, fucose, galactosamine and glucosamine. It appeared on electrophoresis in acrylamide gels as a slow-moving broad band. On similar treatment in the presence of sodium dodecyl sulphate it revealed four glycoprotein zones with apparent Mr of 15200, 18300, 23500 and 25300. Both GP2 and GP3 contained low amounts of aromatic and sulphur-containing amino acid residues and large amounts of Asp, Glu, Ser and Leu. GP3 is similar in some respects to the bovine milk heat- and acid-stable fraction constituent, component 3.

Type
Original Articles
Copyright
Copyright © Proprietors of Journal of Dairy Research 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Andrews, A. T. 1978 a The composition, structure and origin of proteose-peptone component 5 of bovine milk. European Journal of Biochemistry 90 5965CrossRefGoogle ScholarPubMed
Andrews, A. T. 1978 b The composition, structure and origin of proteose-peptone component 8F of bovine milk. European Journal of Biochemistry 90 6771CrossRefGoogle ScholarPubMed
Andrews, A. T. 1983 Proteinases in normal bovine milk and their action on caseins. Journal of Dairy Research 50 4555CrossRefGoogle ScholarPubMed
Andrews, A. T. & Alichanidis, E. 1983 Proteolysis of caseins and the proteose-peptone fraction of bovine milk. Journal of Dairy Research 50 275290CrossRefGoogle ScholarPubMed
Chen, P. S., Toribara, T. Y. & Warner, H. 1956 Microdetennination of phosphorus. Analytical Chemistry 28 17561758CrossRefGoogle Scholar
Dische, Z. & Shettles, L. B. 1948 A specific color reaction of methylpentoses and a spectrophotometric micromethod for their determination. Journal of Biological Chemistry 175 595603CrossRefGoogle Scholar
Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A. & Smith, F. 1956 Colorimetric method for determination of sugars and related substances. Analytical Chemistry 28 350356CrossRefGoogle Scholar
Eigel, W. N. 1981 Identification of proteose-peptone component 5 as a plasmin-derived fragment of bovine β-casein. International Journal of Biochemistry 13 10811086CrossRefGoogle ScholarPubMed
Eigel, W. N. & Keenan, T. W. 1979 Identification of proteose-peptone component 8-slow as a plasmin-derived fragment of bovine β-casein. International Journal of Biochemistry 10 529535CrossRefGoogle ScholarPubMed
Kanno, C. 1989 Characterization of multiple forms of lactophorin isolated from bovine milk whey. Journal of Dairy Science 72 17321739CrossRefGoogle ScholarPubMed
Kester, J. J. & Brunner, J. R. 1982 Milk fat-globule membrane as a possible origin of proteose-peptone glycoproteins. Journal of Dairy Science 65 22412252CrossRefGoogle Scholar
Kolar, C. W. & Brunner, J. R. 1969 Proteose-peptone fraction of bovine milk: distribution in the protein system. Journal of Dairy Science 52 15411546CrossRefGoogle ScholarPubMed
Kolar, C. W. & Brunner, J. R. 1970 Proteose-peptone fraction of bovine milk: lacteal serum components 5 and 8 – casein-associated glycoproteins. Journal of Dairy Science 53 9971008CrossRefGoogle ScholarPubMed
Marchalonis, J. J. & Weltman, J. K. 1971 Relatedness among proteins: a new method of estimation and its application to immunoglobulins. Comparative Biochemistry and Physiology B38 609625Google Scholar
Nejjar, Y., Pâquet, D., Godbillon, G. & Le Deaut, J. Y. 1986 Immunological relationship between the hydrophobic fraction of proteose-peptone and the milk fat globule membrane of bovine milk. International Journal of Biochemistry 18 893900CrossRefGoogle ScholarPubMed
Ng, W. C., Brunner, J. R. & Rhee, K. C. 1970 Proteose-peptone fraction of bovine milk: lacteum serum component 3 — a whey glycoprotein. Journal of Dairy Science 53 987996CrossRefGoogle ScholarPubMed
Paquet, D. 1989 [Review: The proteose-peptone fraction of milk]. Lait 69 121CrossRefGoogle Scholar
Paquet, D. & Alais, C. 1982 [Purification and some molecular characteristics of‘component 3’ of proteose-peptones]. Lait 62 338349CrossRefGoogle Scholar
Paquet, D., Nejjar, Y. & Linden, G. 1988 Study of a hydrophobic protein fraction isolated from milk proteose-peptone. Journal of Dairy Science 71 14641471CrossRefGoogle Scholar
Ramos, M., Sanchez, R. M., Olano, A., Sanz, J. & Martínez-Castro, I. 1988 Comparative studies on ‘acid-stable, heat-stable polypeptides’ of ovine, caprine and bovine milks. Zeitschrift fur Lebensmittel-Untersuchung und -Forschung 186 2224CrossRefGoogle ScholarPubMed
Warren, L. 1959 The thiobarbituric acid assay of sialic acids. Journal of Biological Chemistry 234 19711975CrossRefGoogle ScholarPubMed
Weber, K. & Osborn, M. 1969 The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis. Journal of Biological Chemistry 244 44064412CrossRefGoogle ScholarPubMed
Zacharius, R. M., Zell, T. E., Morrison, J. H. & Woodlock, J. J. 1969 Glycoprotein staining following electrophoresis on acrylamide gels. Analytical Biochemistry 30 148152CrossRefGoogle ScholarPubMed