Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-26T09:42:57.558Z Has data issue: false hasContentIssue false

Estimation of casein micelles' surface energy by means of contact angle measurements

Published online by Cambridge University Press:  01 June 2009

Michel Britten
Affiliation:
Centre de Recherches Alimentaires de Saint-Hyacinthe, 3600 boulevard Casavant Ouest, Saint-Hyacinthe, Québec, CanadaJ2S 8E3
Marcel Boulet
Affiliation:
Centre de Recherches Alimentaires de Saint-Hyacinthe, 3600 boulevard Casavant Ouest, Saint-Hyacinthe, Québec, CanadaJ2S 8E3
Paul Paquin
Affiliation:
Groupe de Recherche STELA, Départment de Sciences et Technologie des Aliments, Université Laval, Québec, CanadaG1K 7P4

Summary

The surface energies of highly hydrated casein micelle layers isolated from variously pretreated skim milks have been determined by means of contact angle measurements. The long range Lifshitz-Van der Waals (LW) and the short range hydrogen bonding (SR) components of surface energy were determined using α-bromonaphthalene and water for contact angle measurements. Casein micelles isolated from untreated and heat treated milks showed similar surface energy values of about 63·5 mJ.m-2 with an LW component of 19·2 mJ.m-2 and an SR component of 44·3 mJ.m-2. The calculated attraction potential energy was − 0·7 mJ.m-2. Casein micelles isolated from renneted milk showed a surface energy of 33·0 mJ.m-2 with an LW component of 30·7 mJ.m-2 and an SR component of 2·3 mJ.m-2. The attraction potential energy of renneted micelles was nearly two orders of magnitude higher than those of micelles from other milks ( − 63·3 mJ.m-2). The SR component of interfacial energy accounted for 98% of this attraction potential. The importance of attractive forces in relation to casein micelle stability is discussed.

Type
Original Articles
Copyright
Copyright © Proprietors of Journal of Dairy Research 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Absolom, D. R., Van Oss, C. J., Zingg, W. & Neumann, A. W. 1981 Determination of surface tensions of proteins. II. Surface tension of serum albumin, altered at the protein-air interface. Biochimica et Biophysica Acta 670 7478CrossRefGoogle ScholarPubMed
Absolom, D. R., Zingg, W. & Neumann, A. W. 1986 Measurement of contact angles on biological and other highly hydrated surfaces. Journal of Colloid and Interface Science 112 599601CrossRefGoogle Scholar
Boulet, M., Yang, A. & Riel, R. R. 1970 Examination of the mineral composition of the micelle of milk by gel filtration. Canadian Journal of Biochemistry 48 816822CrossRefGoogle ScholarPubMed
Dalgleish, D. G. 1982 The enzymatic coagulation of milk. In Developments in Dairy Chemistry–1. Proteins pp. 157187 (Ed. Fox, P. F.). London: Applied Science PublishersGoogle Scholar
Dalgleish, D. G. 1984 Measurement of electrophoretic mobilities and zeta potentials of particles from milk using laser Doppler electrophoresis. Journal of Dairy Research 51 425438CrossRefGoogle Scholar
Dalgleish, D. G., Pouliot, Y. & Paquin, P. 1987 Studies on the heat stability of milk. II. Association and dissociation of particles and the effect of added urea. Journal of Dairy Research 54 3949Google Scholar
Darling, D. F. & Dickson, J. 1979 The determination of the zeta potential of casein micelles. Journal of Dairy Research 46 329332CrossRefGoogle Scholar
David, D. J. & Misra, A. 1985 Surface energetics characterization and relationship to adhesion using a novel contact angle measuring technique. Journal of Colloid and Interface Science 108 371376CrossRefGoogle Scholar
Downey, W. K. & Murphy, R. F. 1970 The temperature dependent dissociation of β-casein from bovine casein micelles and complexes. Journal of Dairy Research 37 361372CrossRefGoogle Scholar
Fowkes, F. M. 1964 Attractive forces at interfaces. Industrial and Engineering Chemistry 56 4052CrossRefGoogle Scholar
Green, M. L. 1973 Studies on the mechanism of clotting of milk. Netherlands Milk and Dairy Journal 27 278285Google Scholar
Griffin, M. C. A. 1987 Structural studies of casein micelles using photon correlation spectroscopy. Journal of Colloid and Interface Science 115 499506CrossRefGoogle Scholar
Griffin, M. C. A. & Roberts, G. C. K. 1985 A 1H-n.m.r. study of casein micelles. Biochemical Journal 228 273276Google Scholar
Holt, C. & Dalgleish, D. G. 1986 Electrophoretic and hydrodynamic properties of bovine casein micelles interpreted in terms of particles with an outer hairy layer. Journal of Colloid and Interface Science 114 513524CrossRefGoogle Scholar
Horne, D. S. 1985 The ethanol stability of milk. Hannah Research Institute Annual Report 1985 89100Google Scholar
Horne, D. S. 1986 Steric stabilization and casein micelle stability. Journal of Colloid and Interface Science 111 250260Google Scholar
Horne, D. S. & Davidson, C. M. 1986 The effect of environmental conditions on the steric stabilization of casein micelles. Colloid & Polymer Science 264 727734Google Scholar
Horne, D. S. & Parker, T. G. 1981 Factors affecting the ethanol stability of bovine milk. IV. Effect of forewarming. Journal of Dairy Research 48 405415Google Scholar
Kirchmeier, O. 1973 Arrangement of components, electric charge and interaction energies of casein particles. Netherlands Milk and Dairy Journal 27 191198Google Scholar
Omenyi, S. N., Snyder, R. S., Van Oss, C. J., Absolom, D. R. & Neumann, A. W. 1981 Effects of zero van Der Waals and zero electrostatic forces on droplet sedimentation. Journal of Colloid and Interface Science 81 402409Google Scholar
Payens, T. C. A. 1978 On enzymatic clotting processes. III. Flocculation rate constants of paracasein and fibrin. Faraday Discussions of the Chemical Society No. 65 164174CrossRefGoogle Scholar
Payens, T. A. J. 1979 Casein micelles: the colloid-chemical approach. Journal of Dairy Research 46 291306Google Scholar
Pearce, K. N. 1976 Moving boundary electrophoresis of native and rennet-treated casein micelles. Journal of Dairy Research 43 2736CrossRefGoogle Scholar
Smits, P. & Van Brouwershaven, J. H. 1980 Heat-induced association of β-lactoglobulin and casein micelles. Journal of Dairy Research 47 313325Google Scholar
Van Oss, C. J., Absolom, D. R., Grossberg, A. L. & Neumann, A. W. 1979 a Repulsive Van der Waals forces. I. Complete dissociation of antigen-antibody complexes by means of negative Van der Waals forces. Immunological Communications 8 1129CrossRefGoogle Scholar
Van Oss, C. J., Absolom, D. R. & Neumann, A. W. 1979 b Repulsive Van der Waals forces. II. Mechanism of hydrophobic chromatography. Separation Science and Technology 14 305317Google Scholar
Van Oss, C. J., Absolom, D. R., Neumann, A. W. & Zingg, W. 1981 Determination of the surface tension of proteins. I. Surface tension of native serum proteins in aqueous media. Biochimica et Biophysica Acta 670 6473CrossRefGoogle ScholarPubMed
Van Oss, C. J., Gillman, C. F. & Neumann, A. W. 1975 Phagocytic Engulfment and Cell Adhesiveness as Cellular Surface Phenomena. New York: DekkerGoogle Scholar
Van Oss, C. J., Good, R. J. & Chaudhury, M. K. 1986 The role of Van der Waals forces and hydrogen bonds in “hydrophobic interactions” between biopolymers and low energy surfaces. Journal of Colloid and Interface Science 111 378390CrossRefGoogle Scholar
Van Oss, C. J., Neumann, A. W., Omenyi, S. N. & Absolom, D. R. 1978 Repulsive Van der Waals interactions: their role in varions separation methods. Separation and Purification Methods 7 245271Google Scholar
Walstra, P. 1979 The voluminosity of bovine casein micelles and some of its implications. Journal of Dairy Research 46 317323Google Scholar
Walstra, P., Bloomfield, V. A., Wei, G. J. & Jenness, R. 1981 Effect of chymosin action on the hydrodynamic diameter of casein micelles. Biochimica et Biophysica Acta 669 258259CrossRefGoogle ScholarPubMed