Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-10T23:41:48.485Z Has data issue: false hasContentIssue false

Establishment of the biochemical and endocrine blood profiles in the Majorera and Palmera dairy goat breeds: the effect of feed restriction

Published online by Cambridge University Press:  20 August 2015

Joana R Lérias
Affiliation:
IICT – Instituto de Investigação Científica Tropical and CIISA – Centro Interdisciplinar de Investigação em Sanidade Animal, Centro de Veterinária e Zootecnia, Faculdade de Medicina Veterinária, Av. Univ. Técnica, 1300-477 Lisboa, Portugal IBET – Instituto de Biologia Experimental e Tecnológica, Av. República, 2780-157 Oeiras, Portugal
Raquel Peña
Affiliation:
Departament de Bioquímica i Biologia Molecular, Facultat de Veterinària., Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
Lorenzo E Hernández-Castellano
Affiliation:
Department of Animal Science, Universidad de Las Palmas de Gran Canaria, 35413 Arucas, Spain Veterinary Physiology, Vetsuisse Faculty, University of Bern, Bremgartenstrasse 109a, CH-3001 Bern, Switzerland
Juan Capote
Affiliation:
ICIA – Instituto Canario de Investigaciones Agrarias, P.O. Box 60 La Laguna, Spain
Noemí Castro
Affiliation:
Department of Animal Science, Universidad de Las Palmas de Gran Canaria, 35413 Arucas, Spain
Anastasio Argüello
Affiliation:
Department of Animal Science, Universidad de Las Palmas de Gran Canaria, 35413 Arucas, Spain
Susana S Araújo
Affiliation:
IICT – Instituto de Investigação Científica Tropical and CIISA – Centro Interdisciplinar de Investigação em Sanidade Animal, Centro de Veterinária e Zootecnia, Faculdade de Medicina Veterinária, Av. Univ. Técnica, 1300-477 Lisboa, Portugal ITQB – Instituto de Tecnologia Química e Biológica, Oeiras, Portugal Plant Biotechnology Laboratory, Department of Biology and Biotechnology ‘L. Spallanzani’, Università degli Studi di Pavia, via Ferrata 1, 27100 Pavia, Italy
Yolanda Saco
Affiliation:
Departament de Bioquímica i Biologia Molecular, Facultat de Veterinària., Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
Anna Bassols
Affiliation:
Departament de Bioquímica i Biologia Molecular, Facultat de Veterinària., Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
André M Almeida*
Affiliation:
IICT – Instituto de Investigação Científica Tropical and CIISA – Centro Interdisciplinar de Investigação em Sanidade Animal, Centro de Veterinária e Zootecnia, Faculdade de Medicina Veterinária, Av. Univ. Técnica, 1300-477 Lisboa, Portugal IBET – Instituto de Biologia Experimental e Tecnológica, Av. República, 2780-157 Oeiras, Portugal ITQB – Instituto de Tecnologia Química e Biológica, Oeiras, Portugal
*
*For correspondence; e-mail: [email protected]

Abstract

Feed restriction, and seasonal weight loss (SWL), are major setbacks for animal production in the tropics and the Mediterranean. They may be solved through the use of autochthonous breeds particularly well adapted to SWL. It is therefore of major importance to determine markers of tolerance to feed restriction of putative use in animal selection. Two indigenous breeds from the Canary Islands, Palmera and Majorera, are commonly used by dairy goat farmers and, interestingly, have different phenotype characteristics albeit with a common ancestry. Indeed, Majorera is well adapted to feed restriction whereas the Palmera is susceptible to feed restriction. In addition, regardless of their importance in dairy production, there are only a limited number of reports relating to these breeds and, to the best of our knowledge, there is no description of their blood metabolite standard values under control conditions or as affected by feed restriction. In this study we analysed the blood metabolite profiles in Majorera and Palmera goats aiming to establish the differential responses to feed restriction between the two breeds and to characterise their metabolite standard values under control conditions. We observed significant differences in creatinine, urea, non-esterified fatty acids (NEFAs), cholesterol, IGF-1 and T3 due to underfeeding. Furthermore, a PCA analysis, revealed that animals submitted to undernutrition could be distinguished from the control groups, with the formation of three separate clusters (Palmera individuals after 22 d of subnutrition (PE22); Majorera individuals after 22 d of subnutrition (ME22) and animals assigned to control conditions (MC0, MC22, PC0 and PC22)), highlighting different responses of the two breeds to undernutrition.

Type
Research Article
Copyright
Copyright © Proprietors of Journal of Dairy Research 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aboelmaaty, AM, Mansour, MM, Ezzo, OH & Hamam, AM 2008 Some reproductive and metabolic responses to food restriction and re-feeding in Egyptian native goats. Glob Veter 2 225232Google Scholar
Ahima, RS, Dushay, J, Flier, SN, Prabakaran, D & Flier, JS 1997 Leptin accelerates the onset of puberty in normal female mice. J Clin Inverst 99 391395CrossRefGoogle ScholarPubMed
Alila-johansson, A 2008 Daily and seasonal rhythms of melatonin, cortisol, leptin, free fatty acids and glycerol in goats. PhD thesis, Faculty of Veterinary Medicine of the University of Helsinki, FinlandGoogle Scholar
Alila-Johansson, A, Eriksson, L, Soveri, T & Laakso, ML 2004 Daily and annual variations of free fatty acid, glycerol and leptin plasma concentrations in goats (Capra hircus) under different photoperiods. Comp. Biochem. Physiol. A Mol Integr Physiol 138 119131CrossRefGoogle ScholarPubMed
Almeida, AM, Schwalbach, LM, de Waal, HO, Greyling, JPC & Cardoso, LA 2006 The effect of supplementation on productive performance of Boer goat bucks fed winter veld hay. Trop Anim Health Prod 38 443449CrossRefGoogle ScholarPubMed
Almeida, AM, Schwalbach, LM, Cardoso, LA & Greyling, JPC 2007 Scrotal, testicular and semen characteristics of young Boer bucks fed winter veld hay: the effect of nutritional supplementation. Small Rum Res 73 216220CrossRefGoogle Scholar
Almeida, AM, Kilminster, T, Scanlon, T, Araújo, SS, Milton, J, Oldham, J & Greeff, JC 2013 Assessing carcass and meat characteristics of Damara, Dorper and Australian Merino lambs under restricted feeding. Trop Anim Health Prod 45 13051311CrossRefGoogle ScholarPubMed
Almeida, AM, Bassols, A, Bendixen, E, Bhide, M, Ceciliani, F, Cristobal, S, Eckersall, PD, Hollung, K, Lisacek, F, Mazzucchelli, G, McLaughlin, M, Miller, I, Nally, JE, Plowman, J, Renaut, J, Rodrigues, P, Roncada, P, Staric, J & Turk, R 2015 Animal board invited review: advances in proteomics for animal and food sciences. Animal 9 117CrossRefGoogle ScholarPubMed
Amills, M, Capote, J, Toma, A, Obexer-ruff, G, Angiolillo, A & Sanchez, A 2004 Strong phylogeographic relationships among three goat breeds from the Canary Islands. J Dairy Res 71 257262CrossRefGoogle ScholarPubMed
Bauchart, D 1993 Lipid absorption and transport in ruminants. J Dairy Sci 76 38643881CrossRefGoogle ScholarPubMed
Brosnan, JT & Brosnan, ME 2010 Creatine metabolism and the urea cycle. Mol Genet Metab 100 (Suppl) S49S52CrossRefGoogle ScholarPubMed
Bueno, MS & Vitti, DM 1999 Phosphorus levels for goats endogenous fecal and net requirement for maintenance. Pesq Agropec Bras 34 675681Google Scholar
Caldeira, RM, Belo, AT, Santos, CC, Vazques, MI & Portugal, AV 2007 The effect of long-term feed restriction and over-nutrition on body condition score, blood metabolites and hormonal profiles in ewes. Small Rumin Res 68 242255CrossRefGoogle Scholar
Capen, CC & Martin, SL 1989 The effects of Xenobiotics on the structure and function of thyroid follicular and C-cells. Toxicol Pathol 17 266CrossRefGoogle ScholarPubMed
Capote, J, Argüello, A, Castro, N, López, JL & Caja, G 2006 Short communication: correlations between udder morphology, milk yield, and milking ability with different milking frequencies in dairy goats. J Dairy Sci 89 20762079CrossRefGoogle ScholarPubMed
Carbone, JW, Mcclung, JP & Pasiakos, SM 2012 Skeletal muscle responses to negative energy balance: effects of dietary protein. Am Soc Nutr 3 119126Google ScholarPubMed
Cardoso, LA & Almeida, AM 2013 Enhancing animal welfare and farmer income through strategic animal feeding. In Enhancing Animal Welfare and Farmer Income through Strategic Animal Feeding, pp. 3744 (Ed. Makkar, HPS). Rome: Food and Agricultural Organization of the United Nations (FAO)Google Scholar
Celi, P, Di Trana, A & Claps, S 2008 Effects of perinatal nutrition on lactational performance, metabolic and hormonal profiles of dairy goats and respective kids. Small Rumin Res 79 129136CrossRefGoogle Scholar
Clemmons, DR & Van Wyk, JJ 1985 Evidence for a functionalrole of endogenously produced somatomedin-like peptides in the stimulation of human fibroblast and porcine smooth muscle cell DNA synthesis. J Clin Invest 75 19141918CrossRefGoogle Scholar
Dashtizadeh, M, Zamiri, M, Kamalzadeh, A & Kamali, A 2008 Effect of feed restriction on compensatory growth response of young male goats. Iran J Vet Res 9 109120Google Scholar
de Almeida, AM & Cardoso, LA 2008a Animal production and genetic resources in Guinea Bissau: I--Northern Cacheu province. Trop Anim Health Prod 40 529536CrossRefGoogle ScholarPubMed
de Almeida, AM & Cardoso, LA 2008b Animal production and genetic resources in Guinea Bissau: II--Tombali province. Trop Anim Health Prod 40 537543CrossRefGoogle ScholarPubMed
D'Ercole, AJ, Stiles, DA & Underwood, EL 1984 Tissue concentrations of somatomedin C: further evidence for multiple sites of synthesis and paracrine or autocrine mechanisms of action. Proc Natl Acad Sci USA 81 935939CrossRefGoogle ScholarPubMed
Dhinaa, AN & Palanisamy, PK 2010 Z-Scan technique: to measure the total protein and albumin in blood. J Biomed Sci Eng 3 285290CrossRefGoogle Scholar
Dunshea, FR, Bell, AW & Trigg, TE 1988 Relations between plasma non-esterified fatty acid metabolism and body tissue mobilization during chronic undernutrition in goats. Br J Nutr 60 633644CrossRefGoogle ScholarPubMed
Escuder, A, Fernández, G & Capote, J 2006 Characterisation of Palmera dairy goat production systems. Options Méditerranéennes 70 95100Google Scholar
Eriksson, L & Teräväinen, TL 1989 Circadian rhythm of plasma cortisol and blood glucose in goats. Asian-Austral J Anim Sci 2 202203CrossRefGoogle Scholar
Fresno, MR, Gómez, J, Molina, A, Darmanin, N, Capote, J & Delgado, JV 1994 Preliminary study of the Majorera milk goat productive performance. Arch Zootecnia 43 181186Google Scholar
Guerra-García, M, Meza-Herrera, CA, Sánchez-Torres-Esqueda, MT, Gallegos-Sánchez, J, Torres-Hernández, G & Pro-Martínez, A 2009 IGF-I ovarian activity of goats in divergent body condition and with a supplement of non-degradable protein in rumen. Agrociencia 43 241247Google Scholar
Hatfield, PG, Hopkins, JA, Ramsey, WS & Gilmore, A 1998 Effects of level of protein and type of molasses on digesta kinetics and blood metabolites in sheep. Small Rumin Res 28 161170CrossRefGoogle Scholar
Hernández-Castellano, LE, Almeida, AM, Ventosa, M, Coelho, AV, Castro, N & Argüello, A 2014 The effect of colostrum intake on blood plasma proteome profile in newborn lambs: low abundance proteins. BMC Vet Res 5 1085Google Scholar
Hernández-Castellano, LE, Morales-delaNuez, A, Sánchez-Macias, D, Moreno-Indias, I, Torres, A, Capote, J, Argüello, A & Castro, N 2015a The effect of colostrum source (goat vs. sheep) and timing of the first colostrum feeding (2 h vs. 14 h after birth) on body weight and immune status of artificially reared newborn lambs. J Dairy Sci 98 204210CrossRefGoogle Scholar
Hernández-Castellano, LE, Morales-delaNuez, A, Sánchez-Macias, D, Moreno-Indias, I, Torres, A, Capote, J, Argüello, A & Castro, N 2015b The effect of milk source on body weight and immune status of lambs. Livest Sci 175 7076CrossRefGoogle Scholar
Hernández-Castellano, LE, Argüello, A, Almeida, AM, Castro, N & Bendixen, E 2015c Colostrum protein uptake in neonatal lambs examined by descriptive and quantitative liquid chromatography-tandem mass spectrometry. J Dairy Sci 98 135147CrossRefGoogle ScholarPubMed
Herrera, R, Puyol, D & Martín, E 2001 Influence of the North Atlantic Oscillation on the Canary Islands precipitation. J Clim 14 388939032.0.CO;2>CrossRefGoogle Scholar
Huntington, GB & Archibeque, SL 1999 Practical aspects of urea and ammonia metabolism in ruminants. Proc Am Soc Anim Sci 111. http://www.researchgate.net/profile/Gerald_Huntington/publication/228474751Google Scholar
Hyder, I, Ramesh, K, Sharma, S, Uniyal, S, Yadav, VP, Panda, RP, Maurya, VP, Singh, G & Sarkar, M 2013 Effect of different dietary energy levels on physio-biochemical, endocrine changes and mRNA expression profile of leptin in goat (Capra hircus). Livest Sci 152 6373CrossRefGoogle Scholar
Javid, J 1978 Human haptoglobins. Curr Top Hematol 1 151192Google ScholarPubMed
Jia, ZH, Sahlu, T, Fernandez, JM, Hart, SP & Teh, TH 1995 Effects of dietary protein level on performance of Angora and cashmere-producing Spanish goats. Small Rumin Res 16 113119CrossRefGoogle Scholar
Kasumu, A 2011 Effects of breed, sex and age on serum biochemistry in Nigerian goats. BSc thesis, College of Animal Science and Livestock Production, University of Agriculture, Abeokuta, Nigeria. pp46Google Scholar
Lamy, E, van Harten, S, Sales-Baptista, E, Guerra, MM & Almeida, AM 2012 Factors influencing livestock productivity. In Environmental Stress and Amelioration in Livestock Production, pp. 19–51 (Eds S Veerasamy Sejian, SMK Naqvi, T Ezeji, J Lakritz & R Lal). Berlin: Springer, Verlag (ISBN: 978-3-642-29204-0)CrossRefGoogle Scholar
Lérias, JR, Hernández-Castellano, LE, Morales-delaNuez, A, Araújo, SS, Castro, N, Argüello, A, Capote, J & Almeida, AM 2013 Body live weight and milk production parameters in the Majorera and Palmera goat breeds from the Canary Islands: influence of weight loss. Trop Anim Health Prod 45 17311736CrossRefGoogle ScholarPubMed
Lérias, JR, Hernández-Castellano, LE, Suárez-Trujillo, A, Castro, N, Pourlis, A & Almeida, AM 2014 The mammary gland in small ruminants: major morphological and functional events underlying milk production - a review. J Dairy Res 81 304318CrossRefGoogle ScholarPubMed
Liu, ZJ & McMeniman, NP 2006 Effect of nutrition level and diets on creatinine excretion by sheep. Small Rumin Res 63 265273CrossRefGoogle Scholar
Martínez-de la Puente, J, Moreno-Indias, I, Morales-Delanuez, A, Ruiz-Díaz, M, Hernández-Castellano, LE, Castro, N & Argüello, A 2011 Effects of feeding management and time of day on the occurrence of self-suckling in dairy goats. Vet Rec 168 378CrossRefGoogle ScholarPubMed
McDermott, JJ, Staal, SJ, Freeman, HA, Herrero, M & Van De Steeg, JA 2010 Sustaining intensification of smallholder livestock systems in the tropics. Livest Sci 130 95109CrossRefGoogle Scholar
McDonald, P, Edwards, RA & Greenhalgh, JFD 1988 Animal Nutrition. 4th edition. Harlow, UK: Longman Scientific & TechnicalGoogle Scholar
Morales de la Nuez, A, Moreno-Indias, I, Sánchez-Macías, D, Hérnandez-Castellano, LE, Suarez-Trujillo, A, Assunção, P, Argüello, A, Castro, N & Capote, J 2014 Effects of Crypthecodinium cohnii, Chlorela spp. and Isochrysis galbana addition to milk replacer on goat kids and lambs growth. J Appl Anim Res 42 213216CrossRefGoogle Scholar
Navarro-Ríos, M, Fernández, G & Perezgrovas, R 2011 Characterization of Majorera goat production systems in the Canary Islands. Options Méditerranéennes 100 205210Google Scholar
Ollier, S, Robert-Granié, C, Bernard, L, Chilliard, Y & Leroux, C 2007 Mammary transcriptome analysis of food-deprived lactating goats highlights genes involved in milk secretion and programmed cell death. J Nutr 137 560567CrossRefGoogle ScholarPubMed
Ríos, C, Marín, MP, Catafau, M & Wittwer, F 2006 Concentraciones sanguíneas de ß-hidroxibutirato, NEFA, colesterol y urea en cabras lecheras de tres rebaños con sistemas intensivos de producción y su relación con el balance nutricional. Arch Med Vet 38 1923CrossRefGoogle Scholar
Sadrzadeh, SMH & Bozorgmehr, J 2004 Haptoglobin phenotypes in health and disorders. Pathol Patterns Rev 121 97104CrossRefGoogle ScholarPubMed
Sasaki, S 2002 Mechanism of insulin action on glucose metabolism in ruminants. J Anim Sci 73 423433CrossRefGoogle Scholar
Scanlon, TT, Almeida, AM, Van Burgel, A, Kilminster, T, Milton, J, Greeff, JC & Oldham, C 2013 Live weight parameters and feed intake in Dorper, Damara and Australian Merino lambs exposed to restricted feeding. Small Rumin Res 109 101106CrossRefGoogle Scholar
Torres, A, Castro, N, Hernández-Castellano, LE, Argüello, A & Capote, J 2013 Short communication: effects of milking frequency on udder morphology, milk partitioning, and milk quality in 3 dairy goat breeds. J Dairy Sci 96 10711074CrossRefGoogle ScholarPubMed
Tsiplakou, E, Chadio, S, Papadomichelakis, G & Zervas, G 2012 The effect of long term under- and over-feeding on milk and plasma fatty acids profile and on insulin and leptin concentrations of goats. Int Dairy J 24 8792CrossRefGoogle Scholar
Underwood, EJ & Suttle, NF 1999 The Mineral Nutrition of Livestock. 3rd edition. London, UK: CABI PublishingCrossRefGoogle Scholar
Wilde, CJ, Quarrie, LH, Tonner, E, Flint, DJ & Peaker, M 1997 Mammary apoptosis. Livest Prod Sci 50 2937CrossRefGoogle Scholar
Yang, B, Bassols, A, Saco, Y & Pérez-Enciso, M 2011 Association between plasma metabolites and gene expression profiles in five porcine endocrine tissues. Genet Cel Evol 43 28CrossRefGoogle ScholarPubMed
Zulu, VC, Nakao, T & Sawamukai, Y 2002 Insulin-like growth factor-I as a possible hormonal mediator of nutritional regulation of reproduction in cattle. J Vet Med Sci 64 657665CrossRefGoogle ScholarPubMed