Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-22T08:58:21.609Z Has data issue: false hasContentIssue false

Enzymic dephosphorylation of bovine casein to improve acid clotting properties and digestibility for infant formula

Published online by Cambridge University Press:  01 June 2009

Eunice Li-Chan
Affiliation:
Department of Food Science, University of British Columbia, Vancouver, B.C., Canada, V6T 1W5
Shuryo Nakai
Affiliation:
Department of Food Science, University of British Columbia, Vancouver, B.C., Canada, V6T 1W5

Summary

To improve acid clotting properties, enzymic dephosphorylation of caseins with calf intestinal alkaline phosphatase (CAP) or potato acid phosphatase (PAP) was investigated. Greater dephosphorylation was achieved using αs1- or β-casein as substrates, compared to whole casein or skim milk. Electrophoresis of PAP-modified caseins revealed bands with lower mobility and a multibanded pattern in the β-casein region which was similar to that of human β-casein. On the other hand, CAP modification produced electrophoretic bands having lower mobility of the β-casein component, but with higher mobility in the αs1-casein component as well as increased net negative charge in the CAP-casein. PAP-casein formed a fine dispersion upon acidification to pH 4. with a microstructure similar to that of acidified human casein. Greater initial rates of hydrolysis by pepsin at pH 4 were observed for both CAP- and PAP-modified caseins, compared to bovine and human caseins. The rate and extent of hydrolysis remained high for CAP-casein but tended to level off with PAP-casein during sequential digestion with pepsin and pancreatin. There may be advantages in the use of partial dephosphorylation to improve acid clotting and digestibility properties of bovine casein for infant feeding.

Type
Original Articles
Copyright
Copyright © Proprietors of Journal of Dairy Research 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alais, C. & Blanc, B. 1975 Milk proteins: biochemical and biological aspects. World Review of Nutrition and Dietetics 20 66167CrossRefGoogle ScholarPubMed
Aoki, T., Toyooka, K. & Kako, Y. 1985 Role of phosphate groups in the calcium sensitivity of αs2-casein. Journal of Dairy Science 68 16241629CrossRefGoogle Scholar
Azuma, N. & Yamauchi, K. 1987 A glyco-phosphoprotein in human milk. Journal of Dairy Research 54 199205CrossRefGoogle ScholarPubMed
Bingham, E. W. 1976 Modification of casein by phosphatases and protein kinases. Journal of Agricultural and Food Chemistry 24 10941099CrossRefGoogle ScholarPubMed
Bingham, E. W., Farrell, H. M. Jr & Carroll, R. J. 1972 Properties of dephosphorylated αs1-casein. Precipitation by calcium ions and micelle formation. Biochemistry 11 24502454CrossRefGoogle Scholar
Bingham, E. W., Farrell, H. M. Jr & Dahl, K. J. 1976 Removal of phosphate groups from casein with potato acid phosphatase. Biochimica et Biophysica Acta 429 448460CrossRefGoogle ScholarPubMed
Blanc, B. 1981 Biochemical aspects of human milk – comparison with bovine milk. World Review of Nutrition and Dietetics 36 189CrossRefGoogle ScholarPubMed
Carles, C. & Ribadeau-Dumas, B. 1986 Influence de la phosphorylation sur le comportement des peptides trypsiques de caséine β bovine en Chromatographie liquide haute performance en phase inverse. Le Lait 66 247256CrossRefGoogle Scholar
Cavell, B. 1979 Gastric emptying in preterm infants. Acta Paediatrica Scandinavica 68 725730CrossRefGoogle ScholarPubMed
Chtourou, A., Brignon, G. & Ribadeau-Dumas, B. 1985 Quantification of β-casein in human milk. Journal of Dairy Research 52 239247CrossRefGoogle ScholarPubMed
Greenberg, R. & Groves, M. L. 1979 Human βcasein. Journal of Dairy Research 46 235239CrossRefGoogle ScholarPubMed
Greenberg, R., Groves, M. L. & Peterson, R. F. 1976 Amino terminal sequence and location of phosphate groups of the major human casein. Journal of Dairy Science 59 10161018CrossRefGoogle ScholarPubMed
Greenberg, R., Groves, M. L. & Dower, H. J. 1984 Human β-casein. Amino acid sequence and identification of phosphorylation sites. Journal of Biological Chemistry 259 51325138CrossRefGoogle ScholarPubMed
Holguin, M. & Nakai, S. 1980 Accuracy and specificity of the dinitrobenzenesulfonate methods for available lysine in proteins. Journal of Food Science 45 12181222CrossRefGoogle Scholar
Knoop, A. M. & Peters, K.-H. 1975 [Phosphatase activity in acidified milk]. Milchwissenschaft 30 674680Google Scholar
Kwan, K. K. H., Nakai, S. & Skura, B. J. 1983 Comparison of four methods for determining protease activity in milk. Journal of Food Science 48 14181421CrossRefGoogle Scholar
Layne, E. 1957 Spectrophotometric and turbidimetric methods for measuring proteins. II. Protein estimation with the Folin-Ciocalteau reagent. In Methods in Enzymology vol. III, pp. 448450 (Eds Colowick, S. P. and Kaplan, N. O.). New York: Academic PressGoogle Scholar
Li-Chan, E. & Nakai, S. 1988 Rennin modification of bovine casein to simulate human casein composition: Effect on acid clotting and hydrolysis by pepsin. Canadian Institute of Food Science and Technology Journal 21 200208CrossRefGoogle Scholar
Lorient, D. & Linden, G. 1976 Dephosphorylation of bovine casein by milk alkaline phosphatase. Journal of Dairy Research 43 1926CrossRefGoogle ScholarPubMed
Miranda, G. & Pélissier, J.-P. 1981 In vivo studies on the digestion of bovine caseins in the rat stomach. Journal of Dairy Research 48 319326CrossRefGoogle Scholar
Morrison, W. R. 1964 A fast, simple and reliable method for the microdetermination of phosphorus in biological materials. Analytical Biochemistry 7 218224CrossRefGoogle ScholarPubMed
Nagasawa, T., Ryoki, T., Kiyosawa, I. & Kuwahara, K. 1967 Studies on human casein. I. Fractionation of human casein by diethylaminoethyl cellulose column chromatography. Archives of Biochemistry and Biophysics 121 502507CrossRefGoogle ScholarPubMed
Naito, H. & Suzuki, H. 1974 Further evidence for the formation in vivo of phosphopeptide in the intestinal lumen from dietary β-casein. Agricultural and Biological Chemistry 38 15431545CrossRefGoogle Scholar
Nakai, S. 1962 Study on digestion of milk protein and its improvement. Ph.D. Thesis, University of TokyoGoogle Scholar
Nakai, S. & Le, A. C. 1970 Spectrophotometric determination of protein and fat in milk simultaneously. Journal of Dairy Science 53 276278CrossRefGoogle Scholar
Nakai, S. & Li-Chan, E. 1987 Effect of clotting in stomachs of infants on protein digestibility of milk. Food Microstructure 6 161170Google Scholar
Ohmiya, K., Sugano, S., Yun, S.-E. & Shimizu, S. 1983 Immobilization of acid phosphatase and its use for dephosphorylation of casein. Agricultural and Biological Chemistry 47 535542Google Scholar
Otani, H., Hori, H. & Hosono, A. 1987 Antigenic reactivity of dephosphorylated αs1-casein, phosphopeptide from β-casein and Ο-phospho-L-serine towards the antibody to native αs1-casein. Agricultural and Biological Chemistry 51 20492054Google Scholar
Packard, V. S. 1982 Human Milk and Infant Formula. New York: Academic PressGoogle Scholar
Pearse, M. J., Linklater, P. M., Hall, R. J. & Mackinlay, A. G. 1986 Effect of casein micelle composition and casein dephosphorylation on coagulation and syneresis. Journal of Dairy Research 53 381390CrossRefGoogle Scholar
Pepper, L. & Thompson, M. P. 1963 Dephosphorylation of αs- and κ-caseins and its effect on micelle stability in the κ–αs1-casein system. Journal of Dairy Science 46 764767CrossRefGoogle Scholar
Pildes, R. S., Blumenthal, I. & Ebel, A. 1980 Stomach emptying in the newborn. Pediatrics 66 482483CrossRefGoogle ScholarPubMed
Reimerdes, E. H. & Roggenbuck, G. 1980 [Chemistry and technology of milk proteins. 1. Modification of β-casein and casein micelles by acid phosphatase from potatoes]. Milchwissenschaft 35 195201Google Scholar
Rüegg, M. & Blanc, B. 1982 Structure and properties of the particulate constituents of human milk. A review. Food Microstructure 1 2547Google Scholar
Stahmann, M. A. & Woldegiorgis, G. 1975 Enzymatic methods of protein quality determination. In Protein Nutritional Quality of Foods and. Feeds, Part I, pp. 211234. (Ed. Friedman, M.). New York: Marcel Dekker, Inc.Google Scholar
Toyoda, M. & Yamauchi, K. 1972 Conformation and some properties of β-casein-like fraction of human milk. Biochimica et Biophysica. Acta 263 555563CrossRefGoogle Scholar
West, D. W. 1984 The structure and function of the phosphorylated residues of casein. Hannah Research 1984 101120Google Scholar
Whikehart, D. R. & Rafter, G. W. 1970 Effects of varying protein to protein-phosphate ratios of αs-casein on αs-κ-casein micelles. Journal of Dairy Science 53 11711176CrossRefGoogle Scholar
Yamauchi, K., Takemoto, S. & Tsugo, T. 1967 Calcium binding property of dephosphorylated caseins. Agricultural and Biological Chemistry 31 5463CrossRefGoogle Scholar
Yoshikawa, M., Tamaki, M., Sugimoto, E. & Chiba, H. 1974 Effect of dephosphorylation on the self-association and the precipitation of β-casein. Agricultural and Biological Chemistry 38 20512052Google Scholar
Yun, S.-E., Ohmiya, K. & Shimizu, S. 1982 a Role of β-casein in milk curdling. Agricultural and Biological Chemistry 46 443449Google Scholar
Yun, S.-E., Ohmiya, K. & Shimizu, S. 1982 b Role of the phosphoryl group of β-casein in milk curdling. Agricultural and Biological Chemistry 46 15051511Google Scholar