Published online by Cambridge University Press: 30 August 2022
This experiment aimed to investigate the effects of inulin supplementation on milk production and composition, feed intake, nutrient digestibility and rumen fermentation parameters in lactating ewes. The experimental treatments were (1) control group (basal diet), (2) basal diet plus 2% inulin (w/w) and (3) basal diet plus 4% inulin (w/w). The experiment was carried out for 21 d in a fully randomized design involving eighteen Ghezel ewes. Production and composition (percentages of fat, protein, lactose and fat-free solids and fatty acid profiles) of milk were measured. Faeces were collected in the last 3 days of the experiment to determine digestibility. On the last day of the experiment, rumen fluid samples were taken from the esophagus 3 h after feeding and fermentation parameters (pH, ammonia nitrogen (N-NH3), volatile fatty acids (VFA) and protozoal population) were examined. Daily milk production was not significantly affected by inulin supplementation, but the fat and protein content of the milk was increased whilst urea nitrogen (MUN) and unsaturated fatty acids were decreased (P < 0.05). The dry matter (DM) intake results showed that there was no significant difference between different diets. The highest digestibility of DM and NDF belonged to the inulin fed group (P < 0.05). Inulin consumption numerically increased the pH of the rumen fluid of the animals and significantly decreased the rumen N-NH3 value (P < 0.05). Inulin supplementation also significantly increased total VFA, acetate, and butyrate levels (P < 0.05). In general, it can be concluded that inulin supplementation can improve rumen fermentation, DM and NDF digestibility,as well as compositional aspects of the ewe's milk production.