Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-23T09:49:20.039Z Has data issue: false hasContentIssue false

Effect of thiocyanate on mammary gland growth in rats

Published online by Cambridge University Press:  01 June 2009

H. Pyska
Affiliation:
Department of Animal Physiology, Zootechnical Institute, 31–047 Cracow, Poland

Summary

In growing rats from 3 weeks to 3 months old, 0·1 % potassium thiocyanate (KSCN) decreased the plasma protein-bound iodine level by 47 % and the total DNA in the mammary gland by 11 %, but had no effect on the total KNA. Administration of thiocyanate in the form of 0·1, 0·3 and 0·5 % KSCN during pregnancy and 14 d of lactation lowered the protein-bound iodine level by 48–66 %, the total DNA by 11–47 % and the total RNA by 14–63 %, depending on the KSCN dosage. The 14-d-old litters of rats receiving thiocyanate weighed 4–41 % less than those in the control group.

Type
Original Articles
Copyright
Copyright © Proprietors of Journal of Dairy Research 1977

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Anderson, G. W. (1951). In Medicinal Chemistry. Vol. 1, p. 1. (Ed. Suter, C. M..) New York: Wiley.Google Scholar
Barker, S. B. & Humprey, M. J. (1950). Journal of Clinical Endocrinology 10, 1136.CrossRefGoogle Scholar
Burton, K. (1956). Biochemical Journal 62, 315.CrossRefGoogle Scholar
Donovan, B.T. & Jacobsohn, D. Y. (1960). Acta Endocrinologica 33, 197.Google Scholar
Ekman, L. (1965). Acta Physiologica Scandinavica 65, 331.CrossRefGoogle Scholar
Eskin, B. A., Schuman, R., Krouse, T. & Merion, J. A. (1975). Cancer Research 35, 2332.Google Scholar
Greer, M. A., Stott, A. K. & Milne, K. A. (1966). Endocrinology 79, 237.CrossRefGoogle Scholar
Griffith, D. R. & Turner, C. W. (1961). Proceedings of the Society for Experimental Biology and Medicine 106, 873.CrossRefGoogle Scholar
Grosvenor, C. E. (1961). Endocrinology 69, 1092.CrossRefGoogle Scholar
Jacobsohn, D. (1960). Acta Endocrinologica 35, 107.Google Scholar
Kiruyama, S., Nagasawa, H., Yanai, R. & Yamanouchi, K. (1974). Journal of Endocrinology 62, 213.Google Scholar
Mejbaum, W. (1939). Hoppe-Seyler's Zeitschrift für Physiologische Chemie 258, 117.CrossRefGoogle Scholar
Miller, J. K., Moss, B. R. & Swanson, E. W. (1969). Journal of Dairy Science 52, 677.CrossRefGoogle Scholar
Miller, J. K., Swanson, E. W. & Cragle, R. G. (1965). Journal of Dairy Science 48, 1118.CrossRefGoogle Scholar
Mittra, I. (1974). Nature 248, 525.CrossRefGoogle Scholar
Moon, R. C. (1962). American Journal of Physiology 203, 942.CrossRefGoogle Scholar
Moon, R. C. & Turner, C. W. (1960). Proceedings of the Society for Experimental Biology and Medicine 103, 149.CrossRefGoogle Scholar
Piironen, E. & Virtanen, A. I. (1963). Zeitschrift für Ernährungstvissenschaft 3, 140CrossRefGoogle Scholar
Pyska, H. (1975). Endokrynologia Polska 26, 399.Google Scholar
Pyska, H. & Bobek, S. (1975). Endokrynologia Polska 26, 409.Google Scholar
Schneider, W. C. (1945). Journal of Biological Chemistry 161, 29CrossRefGoogle Scholar