Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-26T14:36:29.238Z Has data issue: false hasContentIssue false

Effect of polymorphic composition of calcium caseinate sols on their stability to rennin

Published online by Cambridge University Press:  01 June 2009

A. M. El-Negoumy
Affiliation:
Agricultural Products Utilization Laboratory, Biochemistry Section, Department of Animal and Range Sciences, Montana State University, Bozeman, U.S.A.

Summary

Five hundred and seven samples of iso-electric caseins were typed by starch-gel electrophoresis and their polymorphic compositions were determined in terms of αs1-, β- and κ-casein variants. Clotting times in minutes were determined on 50 ml of 3% casein solution in milk dialysate containing 0·02 M-Ca as CaCl2 and 2 mg commercial rennin powder at pH 6·60–6·80. The clotting times ranged from 4·06 to 7·41 min. The data indicated that the polymorphic composition of casein significantly influenced its stability to rennin. The polymorphic combinations αs1B+βA+κB and αs1B+βAC+κAB, were the most resistant to rennin action (clotting times of 7·41, 7·39 min respectively). The combinations αs1B+βB+κAB and αs1BC+βB+κB were the least resistant to rennin action (clotting times of 4·25 and 4·06 min respectively). In most cases, caseins with lower stability to rennin contained κB or βB or both in their composition.

Type
Research Article
Copyright
Copyright © Proprietors of Journal of Dairy Research 1972

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Chevalier, R., Mocquot, G., Alais, C. & Bonnat, M. (1950 a). Comptes Rendus Hebdomadaires des Séances de l'Académie des Sciences 230, 581.Google Scholar
Chevalier, R., Mocquot, G., Alais, C. & Bonnat, M. (1950 b). Comptes Rendus Hebdomadaires des Séances de l'Académie des Sciences 231, 249.Google Scholar
El-Negoumy, A. M. (1966 a). Journal of Dairy Science 49, 1461.CrossRefGoogle Scholar
El-Negoumy, A. M. (1966 b). Analytical Biochemistry 15, 437.CrossRefGoogle Scholar
El-Negoumy, A. M. (1966 c). Journal of Chromatography 23, 325.CrossRefGoogle Scholar
El-Negoumy, A. M. (1968). Journal of Dairy Science 51, 1013.CrossRefGoogle Scholar
El-Negoumy, A. M. (1970). Journal of Dairy Research 37, 437.CrossRefGoogle Scholar
El-Negoumy, A. M. (1971). Journal of Dairy Science 54, 1567.CrossRefGoogle Scholar
El-Negoumy, A. M. & Smith, E. P. (1971). Journal of Dairy Science 54, 766.CrossRefGoogle Scholar
Fricke, A. (1958). Milchwissenschaft 13, 211.Google Scholar
Hill, R. L. (1931). Utah Agricultural Experiment Station Bulletin no. 227.Google Scholar
Hostettler, H. & Rüegger, H. R. (1950). Landwirtschaftliches Jahrbuch der Schweiz 64, 669.Google Scholar
McDowall, F. H., Dolby, R. M. & McDowell, A. K. R. (1937) Journal of Dairy Research 8, 31.CrossRefGoogle Scholar
Mocquot, G., Alais, C. & Chevalier, R. (1954). Annales de Technologie Agricole 3, 1.Google Scholar
Parisi, P. (1933). Giornale di Chimica Industriale et Applicata 15, 545.Google Scholar
Peltola, E. (1949). 12th International Dairy Congress, Stockholm 2, 73.Google Scholar
Pyne, G. T. (1955). Dairy Science Abstracts 17, 532.Google Scholar
Rose, D., Davis, D. T. & Yaguchi, M. (1969). Journal of Dairy Science 52, 8.CrossRefGoogle Scholar
Sommer, H. H. & Matsen, H. (1935). Journal of Dairy Science 18, 741.CrossRefGoogle Scholar
Thompson, D. I. & Postle, D. S. (1964). Journal of Milk and Food Technology 27, 271.CrossRefGoogle Scholar