No CrossRef data available.
Published online by Cambridge University Press: 12 December 2022
The results reported in this research communication aimed to reduce the housing discomfort and mastitis incidence of lactating Jersey crossbred cows through modifications to the roof and floor of loose housing stalls. The experiment was conducted on twenty Jersey crossbred cows and they were distributed equally into two different types of housing: (i) existing shed/control group (T0) – concrete floor and asbestos roof and (ii) modified shed/treatment group (T1)- sand flooring (4–6 inch deep; 38% of total area) and a thatch ceiling (4″ thick) under an asbestos roof. Under-roof surface temperature differed significantly (P < 0.01) between the two sheds during both the winter season but a greater difference was observed in the summer (modified sheds were 5–9 °C cooler than the control shed during peak hours (10 am to 3 pm) of the day. The milk yield (kg/d) in both seasons was significantly higher in the treatment group than in the control group (P < 0.01). The overall milk fat and total solid percentage were significantly higher in the treatment than the control group (P < 0.01) but solids not fat (SNF) did not show any difference between the groups. The percentage of milk fat did not differ significantly between the seasons, while the SNF and total solids were also significantly higher in the winter than the summer season (P < 0.01). There was a significantly lower subclinical mastitis test score (MCMT grade: P < 0.05) in the treatment group than in the control group. In the treatment group, the somatic cell count (SCC) was numerically but non-significantly less than in the control group. No differences in MCMT and SCC were observed between seasons (P > 0.05). It was concluded that the provision of sand as stall flooring and an under-roof thatch ceiling as a heat insulator was significantly associated with increased milk yield, milk composition and possibly, lower somatic cell count in dairy Jersey crossbred cows. However, since the study was limited to a single replicate of each housing system with analysis done at individual cow level, further work is needed to confirm these conclusions.