Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2025-01-03T17:22:11.475Z Has data issue: false hasContentIssue false

Effect of fermentation time and acid casein concentration as nitrogen source on microbial rennet production

Published online by Cambridge University Press:  28 July 2020

Héctor A. Fileto-Pérez*
Affiliation:
Departmento de Ingenierías Química y Bioquímica, Instituto Tecnológico de Durango, Tecnológico Nacional de México, Blvd. Felipe Pescador 1830 Ote., Col. Nueva Vizcaya, Durango, Dgo., C.P. 34080, Mexico
Luis G. Montoya-Ayón
Affiliation:
Departmento de Ingenierías Química y Bioquímica, Instituto Tecnológico de Durango, Tecnológico Nacional de México, Blvd. Felipe Pescador 1830 Ote., Col. Nueva Vizcaya, Durango, Dgo., C.P. 34080, Mexico
Esther Soto-García
Affiliation:
Departmento de Ingenierías Química y Bioquímica, Instituto Tecnológico de Durango, Tecnológico Nacional de México, Blvd. Felipe Pescador 1830 Ote., Col. Nueva Vizcaya, Durango, Dgo., C.P. 34080, Mexico
Jesús B. Páez-Lerma
Affiliation:
Departmento de Ingenierías Química y Bioquímica, Instituto Tecnológico de Durango, Tecnológico Nacional de México, Blvd. Felipe Pescador 1830 Ote., Col. Nueva Vizcaya, Durango, Dgo., C.P. 34080, Mexico
Nicolás O. Soto-Cruz
Affiliation:
Departmento de Ingenierías Química y Bioquímica, Instituto Tecnológico de Durango, Tecnológico Nacional de México, Blvd. Felipe Pescador 1830 Ote., Col. Nueva Vizcaya, Durango, Dgo., C.P. 34080, Mexico
Blanca E. García-Caballero
Affiliation:
Departmento de Ingenierías Química y Bioquímica, Instituto Tecnológico de Durango, Tecnológico Nacional de México, Blvd. Felipe Pescador 1830 Ote., Col. Nueva Vizcaya, Durango, Dgo., C.P. 34080, Mexico
José G. Rutiaga-Quiñones
Affiliation:
Facultad de Ingeniería y Tecnología de la Madera (FITECMA), Edificio C, CU, Universidad Michoacana de San Nicolás de Hidalgo (UMSNH), Av. Fco. J. Mújica S/N Col. Felicitas del Río, Morelia, Michoacán, C.P. 58040, Mexico
*
Author for correspondence: Héctor A. Fileto-Pérez, Email: [email protected]

Abstract

We evaluated the effects of fermentation time and acid casein content on the microbial rennet obtained by solid-state fermentation using wheat bran as the carbon source. The experiments used two fermentation times (72 and 96 h), while acid casein content was 1.5, 2.0, 2.5, and 3.0 g. Rennet strength from eight enzymatic extracts was measured using pasteurized whole milk. Rennet strength of samples from 72 h of fermentation showed an increase when acid casein content increased. The rennet strength increased at 96 h of fermentation with increasing amount of casein (up to 2.5 g), and then decreased with the largest addition (3.0 g) of casein. Coagulation time for the sample with highest rennet strength was 420 s.

Type
Research Article
Copyright
Copyright © The Author(s), 2020. Published by Cambridge University Press on behalf of Hannah Dairy Research Foundation.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Cordova, J and Paitan, E (2013) Determination of parameters for obtaining and conservation of adult bovine rennet. Revista Ciencia e Investigación 16, 911.Google Scholar
Crueger, W and Crueger, A (1990) Biotechnology: A Textbook of Industrial Microbiology, 2nd Edn.Sinauer Associates, Sunderland, MA. pp. 189206.Google Scholar
De Castro, R, Nishide, T and Sato, H (2014) Production and biochemical properties of proteases secreted by Aspergillus niger under solid state fermentation in response to different agroindustrial substrates. Biocatalysis Agricultural Biotechnology 3, 236245.10.1016/j.bcab.2014.06.001CrossRefGoogle Scholar
Ding, Z, Liu, S, Gu, Z, Zhang, L, Zhang, K and Shi, G (2011) Production of milk-clotting enzyme by Bacillus subtilis B1 from wheat bran. African Journal of Biotechnology 10, 93709378.Google Scholar
Dutt, K, Meghwanshi, G, Gupta, P and Saxena, R (2008) Role of casein on induction and enhancement of production of a bacterial milk clotting protease from an indigenously isolated Bacillus subtilis. Applied Microbiology 46, 513518.CrossRefGoogle ScholarPubMed
Garg, S and Johri, B (1994) Rennet: current trends and future research. Food Reviews International 10, 313355.Google Scholar
Harboe, M, Kristensen, K and Pia, B (2000) Microbially derived enzymes having enhanced milk clotting activity and method of producing same. US Patent 6127142.Google Scholar
Khademi, F, Abachi, S and Malekzadeh, F (2013) Semi-purification and kinetic study of microfungal rennet biosynthesized by local isolate of Rhizomucor nainitalensis using solid-state fermentation system: concentration methods and determinant factors in clotting activity. European Journal of Experimental Biology 3, 167174.Google Scholar
Kurutahalli, S, Appu, R and Singh, S (2010) Production and characterization of a milk-clotting enzyme from Aspergillus oryzae MTCC 5341. Applied Microbiological Biotechnology 85, 18491859.Google Scholar
Maigua, A (2017) Coagulant enzymes from rabbit stomach to produce fresh cheese (Thesis: Facultad de ciencias pecuarias). Escuela Superior Politécnica de Chimborazo, Eduador.Google Scholar
Mandy, J, Doris, J and Harald, R (2011) Recent advances in milk clotting enzymes. International Journey of Dairy Technology 64, 1633.Google Scholar
Morillo, O, García, T, Guerrero, PJ, Torres, BR, Yzoleth, V and Castañeda, R (2015) Evaluation of experimental production of milk-clotting enzymes using Rhizomucor spp. strains. Revista Colombiana de Biotecnología 17, 5460.CrossRefGoogle Scholar
Osorio, A, Gómez, N and Sánchez, C (2008) Evaluation of different carbon and nitrogen sources to produce rennin using Mucor miehei. Journal of Engineering Faculty University of Antioquia 45, 1726.Google Scholar
Tubesha, A and Al-Delaimy, K (2003) Rennin-like milk coagulant enzyme produced by a local isolate of Mucor. International Journal of Dairy Technology 56, 237241.10.1046/j.1471-0307.2003.00113.xCrossRefGoogle Scholar