Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-27T17:34:57.042Z Has data issue: false hasContentIssue false

Effect of culture parameters on the production of styrene (vinyl benzene) and 1-octene-3-ol by Penicillium caseicolum

Published online by Cambridge University Press:  01 June 2009

Henry E. Spinnler
Affiliation:
Laboratoire de Recherches sur les Arômes, Institut National de la Recherche Agronomique, 17 rue Sully, 21034 Dijon Cedex, France
Olivier Grosjean
Affiliation:
Laboratoire de Recherches sur les Arômes, Institut National de la Recherche Agronomique, 17 rue Sully, 21034 Dijon Cedex, France
Isabelle Bouvier
Affiliation:
Laboratoires Granday-Roger, Sanofi Bio-Industries, BP20, F 77260, La Ferté sous Jouarre, France

Summary

Penicillium caseicolum has been shown to completely synthesize styrene. A medium was developed to test the capacity of different strains for this synthesis. In a synthetic medium, styrene production began only after the glucose was entirely consumed. This production depended on storage temperature and occurred simultaneously with 1-octene-3-ol formation.

Type
Original Articles
Copyright
Copyright © Proprietors of Journal of Dairy Research 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Adda, J., Dekimpe, J., Vassal, L. & Spinnler, H. E. 1989 [Styrene production by Penicillium camemberti Thom.] Lait 69, 115120Google Scholar
Bellamy, L. J. 1958 The Infra-red Spectra of Comptez Molecules, 2nd edn, p. 74. New York: John Wiley & SonsGoogle Scholar
ECK, A. 1984 Le Fromage (a) p. 80; (b) p. 232. Paris: LavoisierGoogle Scholar
Feinberg, M., Favier, J. C. & Ireland-Ripert, J. 1987 Répertoire Général des Aliments, vol. 2, p. 12001. Paris: LavoisierGoogle Scholar
Flanjak, J. & Sherrad, J. 1984 Quantitative analysis of styrene monomer in foods. A limited East Australian survey. Journal of the Science of Food and Agriculture 35 457462Google Scholar
Gallois, A., Gross, B., Langlois, D., Spinnler, H. E. & Brunerie, P. 1990 Influence of culture conditions on production of flavour compounds by 29 ligninolytic Basidiomycetes. Mycological Research 94 494504CrossRefGoogle Scholar
Gross, B., Yonnet, G., Picque, D., Brunerie, P., Corrieu, G. & Asther, M. 1990 Production of methylanthranilate by the basidiomycete Pycnoporus cinnabarinus (Karst.). Applied Microbiology and Biotechnology 34 387391Google Scholar
Heller, S. R. & Milne, G. W. A. 1978 EPA/NIH Mass Spectra Data Base, vol. 1, pp. 108109. Washington, DC: U.S. Government Printing OfficeGoogle Scholar
Kaharadian, C., Josephson, D. B. & Lindsay, R. C. 1985 Contribution of Penicillium sp. to the flavors of Brie and Camembert cheese. Journal of Dairy Science 68 18651877Google Scholar
Loyaux, D., Roger, S. & Adda, J. 1981 The evolution of Champagne volatiles during ageing. Journal of the Science of Food and Agriculture 32 12541258Google Scholar
Miltz, J., Elisha, C. & Mannheim, C. H. 1980 Sensory threshold of styrene and the monomer migration from polystyrene food packages. Journal of Food Processing and Preservation 4 281289Google Scholar
Nyquist, R. A. 1984 The Interpretation of Vapor Phase Infrared Spectra, vol. 1, p. 93. Philadelphia, PA: Sadtler Research Laboratories EdGoogle Scholar
SAS 1985 SAS/STAT Guide for Personal Computers, version 6, pp. 593597. Cary, NC: SAS Institute IncGoogle Scholar
Spinnler, H. E., &xs Djian, A. 1991 Bioconversion of amino acids into flavouring alcohols and esters by Erwinia carotovora subsp. atroseptica. Applied Microbiology and Biotechnology 35 264269CrossRefGoogle Scholar
Tranchant, J. 1982 Manuel Pratique de Chromatographie en Phase Gazeuse, 3ème édition, p. 106. Paris: MassonGoogle Scholar