Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-08T08:52:22.688Z Has data issue: false hasContentIssue false

Effect of aspartyl proteinases of Penicillium caseicolum and Penicillium roqueforti on caseins

Published online by Cambridge University Press:  01 June 2009

Patrick Trieu-Cuot
Affiliation:
Laboratoire de Biochimie et Technologie Laitières, Institut National de la Recherche Agronomique, CNRZ, 78350 Jouy-en-Josas, France
Marie-Jose Archieri-Haze
Affiliation:
Laboratoire de Biochimie et Technologie Laitières, Institut National de la Recherche Agronomique, CNRZ, 78350 Jouy-en-Josas, France
Jean-Claude Gripon
Affiliation:
Laboratoire de Biochimie et Technologie Laitières, Institut National de la Recherche Agronomique, CNRZ, 78350 Jouy-en-Josas, France

Summary

The aspartyl proteinases of Penicillium caseicolum and P. roqueforti acted identically on β-casein; both enzymes split at least 3 bonds: Lys29–Ile30, Lys97–Val98 and Lys99–Glu100. From αsl-casein, these proteinases released 6 main degradation products which arose from the splitting of 4 bonds; P. roqueforti aspartyl proteinase was found to cleave 1 bond at a higher rate than P. caseicolum aspartyl proteinase. A hypothetical sequential hydrolysis mechanism of αsl-casein by these 2 enzymes is proposed from a study of the degradation by isoelectric focusing and by 2-dimensional electrophoresis.

Type
Original Articles
Copyright
Copyright © Proprietors of Journal of Dairy Research 1982

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Creamer, L. K. & Richardson, B. C. 1974 Identification of the primary degradation product of αs1-casein in Cheddar cheese. New Zealand Journal of Dairy Science and Technology 9 913Google Scholar
Fox, P. F., 1981 Proteinases in dairy technology. Netherlands Milk and Dairy Journal 35 233253Google Scholar
Hill, R. D., Lahav, E. & Givol, D. 1974 A rennin-sensitive bond in αsl B-casein. Journal of Dairy Research 41 147153CrossRefGoogle Scholar
D., Le Bars & Gripon, J.-C. 1981 Role of Penicillium roqueforti proteinases during blue cheese ripening. Journal of Dairy Research 48 479487Google Scholar
Lenoir, J., Auberger, B. & Gripon, J. C. 1979 [Characteristics of the proteolytic system of Penicillium caseicolum. 3. Characterization of an acid protease.] Lait 59 244268CrossRefGoogle Scholar
Mercier, J.-C., Grosolaude, F. & Ribadeau-Dumas, B. 1971 [Primary structure of bovine αsl-casein.] European Journal of Biochemistry 23 4151CrossRefGoogle Scholar
Mercier, J. C., Maubois, J. L., Poznanski, S. & Ribadeau-Dumas, B. 1968 [Preparative fractionation of cow and sheep caseins by chromatography on DEAE cellulose in the presence of urea and 2-mercaptoethanol.] Bulletin de la Société de Chimie Biologique 50 521530Google Scholar
Nelson, C. A. 1971 The binding of detergents to proteins. 1. The maximum amount of dodecyl sulfate bound to proteins and the resistance to binding of several proteins. Journal of Biological Chemistry 246 38953901CrossRefGoogle ScholarPubMed
Trieu-Cuot, P. & Gripon, J.-C. 1981 Electrofocusing and two-dimensional electrophoresis of bovine caseins. Journal of Dairy Research 48 303310CrossRefGoogle Scholar
Visser, S. 1981 Proteolytic enzymes and their action on milk proteins. A review. Netherlands Milk and Dairy Journal 35 6588Google Scholar
Zevaco, C., Hermier, J. & Gripon, J. C. 1973 [Proteolytic system of Penicillium roqueforti. III. Purification and properties of the acid protease.] Biochimie 55 13531360CrossRefGoogle Scholar