Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-22T13:46:01.005Z Has data issue: false hasContentIssue false

Dynamic responses of the dairy cow's teat to step changes in pressure

Published online by Cambridge University Press:  01 June 2009

Sybren Y. Reitsma
Affiliation:
Agricultural Engineering Department, Cornell University, Ithaca, N.Y. 14853, USA
Norman R. Scott
Affiliation:
Agricultural Engineering Department, Cornell University, Ithaca, N.Y. 14853, USA

Summary

Dynamic responses of the teat end, measured as changes in external diameter and milk flow-rate, due to step changes in pressure, uniformly applied to the whole teat, are presented. The experiment involved a front and a rear teat of each of 6 Holstein–Friesian cows. The measured variables were: (1) step change in pressure, (2) milk flow-rate, (3) step change in external teat end diameter, (4) rise times of pressure and teat end diameter changes, (5) fall times of pressure and teat end diameter changes, and (6) delay times between pressure and teat end diameter changes both at start of rise and of fall times. A statistical analysis showed that front teats expanded more than rear teats (P < 0·05). Several other findings of importance to any system of milk removal through the streak canal of the teat are discussed.

Type
Original Articles
Copyright
Copyright © Proprietors of Journal of Dairy Research 1979

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Clough, P. A. (1972). The Agricultural Engineer 27 (1), 17.Google Scholar
Foust, H. L. (1941). Journal of the American Veterinary Medical Association 98, 143.Google Scholar
Johansson, I. (1963). Proceedings Symposium on Machine Milking, pp. 8593. Sweden: Alfa-Laval.Google Scholar
LabussiÈre, J. & Richard, P. (1965). Annales de Zootechnie 14, 63.CrossRefGoogle Scholar
McDonald, J. S. (1968). American Journal of Veterinary Research 29, 1315.Google Scholar
McDonald, J. S. (1973). American Journal of Veterinary Research 34, 169.Google Scholar
Mallos, A. J. (1962). Journal of Applied Physiology 17, 131.CrossRefGoogle Scholar
Murgo, J. P., Cox, R. H. & Peterson, L. H. (1971). Journal of Applied Physiology 31, 948.CrossRefGoogle Scholar
Peterson, L. H. (1966). Methods in Medical Research, vol. 2. (Ed. Rushmer, F. F..) Chicago, Ill.: Medical Publishers.Google Scholar
Pounden, W. D. & Grossman, J. D. (1950). American Journal of Veterinary Research 11, 349.Google Scholar
Rabold, K. (1967). Habilitationsschrift. Hohenheim, W. Germany: Universität Hohenheim.Google Scholar
Reitsma, S. Y. (1977). Thesis, Cornell University.Google Scholar
Schmidt, G. H., Guthrie, R. S., Guest, R. W., Hundtoft, E. B., Kumar, A. & Henderson, C. R. (1963). Effect of changes in milking machine design on milking rate, machine stripping, and mastitis. Bulletin Cornell University Agricultural Experimental Station, no. 983.Google Scholar
Stettler, W. Jr, (1973). Thesis, University of Manitoba.Google Scholar
Thiel, C. C., Clough, P. A., Westgarth, D. R. & Akam, D. N. (1966). Journal of Dairy Research 33, 177.CrossRefGoogle Scholar
Thompson, P. D. & Campbell, L. E. (1974). Transactions of the American Society of Agricultural Engineers 17 (3), 496.CrossRefGoogle Scholar
Townsend, J. S. (1969). Thesis, Cornell University.Google Scholar
Turner, C. W. (1952). The Mammary Gland I: The Anatomy of the Udder of Cattle and Domestic Animals. Columbia, Missouri: Lucas Bros.Google Scholar
Venzke, C. E. (1940). Journal of the American Veterinary Medical Association 96, 170.Google Scholar
Webb, B. H. & Johnson, A. H. (1965). Fundamentals of Dairy Chemistry. Westport, Connecticut: AVI.Google Scholar
Weber, W. (1977). Dissertation. München, W. Germany: Technischen Universität München.Google Scholar