Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-25T19:15:45.523Z Has data issue: false hasContentIssue false

Distribution of cholesterol in milk fat fractions

Published online by Cambridge University Press:  01 June 2009

Joseph Arul
Affiliation:
Département de Sciences et Technologie des Aliments et Centre de Recherche en Nutrition, Université Laval, Quebec G1K 7P4, Canada
Armand Boudreau
Affiliation:
Département de Sciences et Technologie des Aliments et Centre de Recherche en Nutrition, Université Laval, Quebec G1K 7P4, Canada
Joseph Makhlouf
Affiliation:
Département de Sciences et Technologie des Aliments et Centre de Recherche en Nutrition, Université Laval, Quebec G1K 7P4, Canada
Rene Tardif
Affiliation:
Département de Sciences et Technologie des Aliments et Centre de Recherche en Nutrition, Université Laval, Quebec G1K 7P4, Canada
Benoit Grenier
Affiliation:
Département de Sciences et Technologie des Aliments et Centre de Recherche en Nutrition, Université Laval, Quebec G1K 7P4, Canada

Summary

Milk fat was fractionated into liquid (m.p. ⋍ 12 °C), intermediate (m.p. ⋍ 21 °C) and solid (m.p. ⋍ 39 °C) fractions by three different processes—melt crystallization, short-path distillation and supercritical CO2 extraction—and the cholesterol content of these fractions determined. Cholesterol was enriched in the liquid fractions from all three processes, in particular about 80% of the cholesterol being found in the liquid fraction obtained by short-path distillation. The basis of migration of cholesterol into various milk fat fractions was explained by its affinity to various triglycerides (melt crystallization) and by vapour pressure and molecular weight (short-path distillation). It was more complex in the supercritical CO2 extraction process; the interplay of cholesterol affinity toward CO2 and its molar volume, and its vapour pressure enhancement under applied pressure play a role.

Type
Original articles
Copyright
Copyright © Proprietors of Journal of Dairy Research 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Allada, S. R. 1984 Solubility parameters of supercritical fluids. Industrial and Engineering Chemistry Product Research and Development 23 344348Google Scholar
Amer, M. A., Kupranycz, D. B. & Baker, B. E. 1985 Physical and chemical characteristics of butterfat fractions obtained by crystallization from molten fat. Journal of the American Oil Chemists' Society 62 15511557CrossRefGoogle Scholar
Arul, J., Boudreau, A., Makhlouf, J., Tardif, R. & Sahasrabudhe, M. R. 1987 Fractionation of anhydrous milk fat by supercritical carbon dioxide. Journal of Food Science 52 12311236CrossRefGoogle Scholar
Arul, J., Boudreau, A., Tardif, R., Makhlouf, J. & Bellavia, T. 1988 a Fractionation of anhydrous milk fat by short-path distillation. Journal of the American Oil Chemists' Society (In Press)CrossRefGoogle Scholar
Arul, J., Tardif, R., Boudreau, A. & McGinnis, S. D. 1988 b Solubility of milk fat triglycerides in supercritical carbon dioxide. Journal of Agricultural and Food Chemistry (In Press)Google Scholar
Association Of Official Analytical Chemists. 1980 In Official Methods of Analysis, 13th edn, p. 451 (Ed. Horwitz, W.). Washington, DC: AOACGoogle Scholar
Bailey, A. E. 1950 In Melting and Solidification of Fats, pp. 239290 (Ed. Bailey, A. E.). New York: Interscience PublishersGoogle Scholar
Barach, J. T. 1985 What's new in genetic engineering of dairy starter cultures and dairy enzymes. Food Technology 39 (10) 73, 74, 79, 84Google Scholar
Barton, A. F. M. 1975 Solubility parameters. Chemical Reviews 75 731751CrossRefGoogle Scholar
Black, R. G. 1973 Pilot-scale studies of milk fat fractionation. Australian Journal of Dairy Technology 28 116119Google Scholar
Black, R. G. 1975 Partial crystallization of milkfat and separation of fractions by vacuum filtration. Australian Journal of Dairy Technology 30 153156Google Scholar
Boudreau, A., Makhlouf, J. & Arul, J. 1984 Fractionation of milk fat triglycerides. Presented at the 44th Annual Institute of Food Technologists Meeting, Anaheim, CA (abstract).Google Scholar
Bour, H. 1980 [Specific aspects of margarines in particular nutritional situations.] Revue Française des Corps Gras 27 5560Google Scholar
Bracco, U. 1980 Butter-like food product. British Patent no. 1559064Google Scholar
Brown, H. B. 1968 The national diet–heart study – Implications for dietitians and nutritionists. Journal of the American Dietetic Association 52 279282.CrossRefGoogle ScholarPubMed
Clydesdale, F. M. 1984 Culture, fitness, and health. Food Technology 38 (11) 108111Google Scholar
Coenen, J. W. E. 1974 [Fractionation and interesterification of fats in the light of the world market for raw materials and end products. 1. Fractionation.] Revue Française des Corps Gras 21 343349Google Scholar
Diepen, G. A. M. & Scheffer, F. E. C. 1948 The solubility of naphthalene in supercritical ethylene. Journal of the American Chemical Society 70 40854089CrossRefGoogle ScholarPubMed
Fedors, R. F. 1974 Method for estimating both solubility parameters and molar volumes of liquids. Polymer Engineering and Science 14 147154, 472CrossRefGoogle Scholar
Feeley, R. M., Criner, P. E. & Watt, B. K. 1972 Cholesterol content of foods. Journal of the American Dietetic Association 61 134149CrossRefGoogle ScholarPubMed
Fjaervoll, A. 1970 Anhydrous milk fat fractionation offers new applications for milk fat. Dairy Industries 35 502505Google Scholar
Freeman, R. R. 1981 In High Resolution Gas Chromatography pp. 163168 (Ed. Packard, Hewlett). Avondale: Hewlett PackardGoogle Scholar
Hildebrand, J. H. & Scott, R. L. 1950 In Stability of Non Electrolytes pp. 16169. New York: Reinhold.Google Scholar
Hildebrand, J. H., Prausnitz, J. M. & Scott, R. L. 1970 Regular and Related Solutions: The Solubility of Gases, Liquids and Solids pp. 17, 8291. New York: Van Nostrand ReinholdGoogle Scholar
Hoy, K. L. 1975 Tables of Solubility Parameters. South Charleston, WV: Union Carbide Corporation, Research and Development DeptGoogle Scholar
Jebson, R. S. 1976 Present trends in the development and manufacture of milkfat based dairy products–a review. New Zealand Journal of Dairy Science and Technology 11 206210Google Scholar
Kaufmann, W., Biernoth, G., Frede, E., Merk, W., Precht, D. & Timmen, H. 1982 [Fractionation of butterfat by extraction with supercritical CO2.] Milchwissenschaft 37 9296Google Scholar
Krukonis, V. J. & Kurnik, R. T. 1985 Solubility of solid aromatic isomers in carbon dioxide. Journal of Chemical Engineering Data 30 247249CrossRefGoogle Scholar
Makhlouf, J., Arul, J., Boudreau, A., Verret, P. & Sahasrabudhe, M. 1987 [Fractionation of milk fat by simple crystallization and its use in the manufacture of soft butters.] Canadian Institute of Food Science and Technology Journal 20 236245CrossRefGoogle Scholar
Martine, F. 1982 [Fractionation and hydrogenation of milk fat.] Technique Laitière No. 967 1721Google Scholar
Morrison, R. T. & Boyd, R. N. 1973 Organic Chemistry 3rd edn pp. 30, 86, 152, 1058. Boston, MA: Allyn & BaconGoogle Scholar
Newitt, D. M., Pai, M. U. & Kuloor, N. R. 1956 In Thermodynamic Functions of Gases vol. 1, pp. 102134 (Ed. Din, F.) London: Butterworths Scientific PublicationsGoogle Scholar
Norris, R., Gray, I. K., McDowell, A. K. R. & Dolby, R. M. 1971 The chemical composition and physical properties of fractions of milk fat obtained by a commercial fractionation process. Journal of Dairy Research 38 179191CrossRefGoogle Scholar
Patton, S. & McCarthy, R. D. 1963 Structure and synthesis of milk fat. IV. Role of the mammary gland with special reference to the cholesterol esters. Journal of Dairy Science 46 396400CrossRefGoogle Scholar
Perry, E. S., Weber, W. H. & Daubert, B. F. 1949 Vapor pressures of phlegmatic liquids. 1. Simple and mixed triglycerides. Journal of the American Chemical Society 71 37203726CrossRefGoogle Scholar
Pfaudler, Co. 1982 Wiped Film Evaporator. Bulletin no. SB39–100-I. Rochester, NY, USAGoogle Scholar
Prausnitz, J. M. 1969 Molecular Thermodynamics of Fluid-Phase Equilibria pp. 269278. Englewood Cliffs, NJ: Prentice-HallGoogle Scholar
Recourt, J. H. 1966 In Laboratory Handbook for Oil and Fat Analysts pp. 357361 (Eds Cocks, L. V. & van Rede, C.). London: Academic PressGoogle Scholar
Ricci-Rossi, G. & Deffense, E. 1984 [Experience in the fractionation of fats according to the Tirtiaux process.] Fette Seifen Anstrichmittel 86 (Suppl. 1) 500505CrossRefGoogle Scholar
Riel, R. R. & Paquet, R. 1972 [Process for continuous fractionation of lipids by fusion and filtration.] Canadian institute of Food Science and Technology Journal 5 210213Google Scholar
Sweeney, J. P. & Weihrauch, J. L. 1976 Summary of available data for cholesterol in foods and methods for its determination. CRC Critical Reviews in Food Science and Nutrition 8 131159CrossRefGoogle Scholar
Vetere, A. 1979 Predictive method for calculating the solubility of solids in supercritical gases: application to polar mixtures. Chemical Engineering Science 34 13931400CrossRefGoogle Scholar
Vovan, X. V. & Riel, R. R. 1973 [Improving the spreadability of butter by elimination of the intermediary phase.] Canadian Institute of Food Science and Technology Journal 6 254260CrossRefGoogle Scholar
Weast, R. C. (Ed.) 1980 In CRC Handbook of Chemistry and Physics, 61st edn p. C246Google Scholar
Webster, T. J. 1953 Theoretical aspects of the effect of pressure on gas + condensed phase equilibria. Faraday Society Discussions 15 243253CrossRefGoogle Scholar
Zosel, K. 1978 Separation with supercritical gases – practical application. Angewandle Chemie, International Edition in English 17 702709CrossRefGoogle Scholar