Published online by Cambridge University Press: 01 June 2009
The rates of proteolysis during ripening were followed in cheeses made with either calf rennet or swine pepsin and either starter or δ-gluconic acid lactone (GAL) as a replacement for the starter. A gel-filtration column technique and starch-gel electrophoresis were used for analysis, and bacterial counts were made on all samples. Proteolysis was faster in cheeses made using GAL than in those made using starter and also slightly faster in GAL cheeses made with swine pepsin than in those made with rennet. Further, it was considerably slower in starter-containing cheeses made with swine pepsin than in those made with rennet. It is suggested that these differences were due to the much greater rate of development of acidity in cheeses made with GAL than in those made with starter, which resulted in more of the coagulant being incorporated into the curd in an active state. The rate of proteolysis in starter-containing cheeses appeared to follow a characteristic course, being initially slow, then markedly increasing with a later slow decline. It is suggested that the increase in the rate of proteolysis was due to an increase in the total activity of bacterial proteinases released by lysis of the bacteria. Indications were obtained that the coagulants and bacterial proteinases catalysed broadly similar patterns of protein breakdown in cheese, and that medium-sized peptides (mol. wt 9000–14000) were formed as definite intermediates in the process. The results also showed that rennet and swine pepsin remained active for at least 7 months in GAL cheeses, that rennet contributed significantly to proteolysis in starter-containing cheeses, and that swine pepsin was at least extensively inactivated and possibly completely inactivated during cheese-making with starter.