Hostname: page-component-669899f699-chc8l Total loading time: 0 Render date: 2025-04-24T20:55:43.715Z Has data issue: false hasContentIssue false

Comparison of anti-SARS-CoV-2 activity of some commercial dairy products

Published online by Cambridge University Press:  05 December 2024

Yasuhiro Hayashi
Affiliation:
Faculty of Agriculture, University of Miyazaki, 1-1 Gakuen-kibanadai-nishi, Miyazaki, Miyazaki, Japan
Sei Arizono
Affiliation:
Faculty of Agriculture, University of Miyazaki, 1-1 Gakuen-kibanadai-nishi, Miyazaki, Miyazaki, Japan
Takashi Tanikawa*
Affiliation:
Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Saitama, Japan
*
Corresponding author: Takashi Tanikawa; Email: [email protected]

Abstract

The continuing emergence of new variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) could be ameliorated by infection prevention through daily diet. In this study, we examined the anti-SARS-CoV-2 activity of 10 commercially available dairy products. They did not show any cytotoxicity against VeroE6/transmembrane protease serine 2 (TMPRSS2) cells (CC50 > 4 mg/ml). Importantly, these cells were checked using the cytopathic effect (CPE) assay, and 4 mg/ml dairy products reduced virus-induced CPE by more than 30%. Notably, Icreo akachan milk, an infant formula, showed the highest antiviral activity with an IC50 of 1.4 mg/ml. We assessed the effects of the dairy products on the entry of SARS-CoV-2 pseudovirus. R1 and Yakult, lactic acid bacterial beverages, inhibited viral entry with IC50 of 2.9 and 3.5 mg/ml, respectively. Collectively, these results indicate that commercially available dairy products moderately inhibit SARS-CoV-2 infection and may reduce the incidence of viral infections.

Type
Research Article
Copyright
Copyright © The Author(s), 2024. Published by Cambridge University Press on behalf of Hannah Dairy Research Foundation

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Beigel, JH, Tomashek, KM, Dodd, LE, Mehta, AK, Zingman, BS, Kalil, AC, Hohmann, E, Chu, HY, Luetkemeyer, A, Kline, S, Lopez de Castilla, D, Finberg, RW, Dierberg, K, Tapson, V, Hsieh, L, Patterson, TF, Paredes, R, Sweeney, DA, Short, WR, Touloumi, G, Lye, DC, Ohmagari, N, Oh, MD, Ruiz-Palacios, GM, Benfield, T, Fätkenheuer, G, Kortepeter, MG, Atmar, RL, Creech, CB, Lundgren, J, Babiker, AG, Pett, S, Neaton, JD, Burgess, TH, Bonnett, T, Green, M, Makowski, M, Osinusi, A, Nayak, S and Lane, HC (2020) Remdesivir for the treatment of COVID-19 – final report. The New England Journal of Medicine 383, 18131826.CrossRefGoogle ScholarPubMed
Fan, H, Hong, B, Luo, Y, Peng, Q, Wang, L, Jin, X, Chen, Y, Hu, Y, Shi, Y, Li, T, Zhuang, H, Zhou, Y-H, Tong, Y and Xiang, K (2020) The effect of whey protein on viral infection and replication of SARS-CoV-2 and pangolin coronavirus in vitro. Signal Transduction and Targeted Therapy 5, 275.CrossRefGoogle ScholarPubMed
Gallo, V, Giansanti, F, Arienzo, A and Antonini, G (2022) Antiviral properties of whey proteins and their activity against SARS-CoV-2 infection. Journal of Functional Foods 89, 104932.CrossRefGoogle ScholarPubMed
Hayashi, Y, Higa, N, Yoshida, T, Tyas, TA, Mori-Yasumoto, K, Yasumoto-Hirose, M, Tani, H, Tanaka, J and Jomori, T (2024) Onnamide A suppresses the severe acute respiratory syndrome-coronavirus 2 infection without inhibiting 3-chymotrypsin-like cysteine protease. The Journal of Biochemistry 176, 197203.CrossRefGoogle ScholarPubMed
Kell, DB, Heyden, EL and Pretorius, E (2020) The biology of lactoferrin, an iron-binding protein that can help defend against viruses and bacteria. Frontiers in Immunology 11, 1221.CrossRefGoogle ScholarPubMed
Lai, X, Yu, Y, Xian, W, Ye, F, Ju, X, Luo, Y, Dong, H, Zhou, Y-H, Tan, W, Zhuang, H, Li, T, Liu, X, Ding, Q and Xiang, K (2022) Identified human breast milk compositions effectively inhibit SARS-CoV-2 and variants infection and replication. iScience 25, 104136.CrossRefGoogle ScholarPubMed
Owen, DR, Allerton, CMN, Anderson, AS, Aschenbrenner, L, Avery, M, Berritt, S, Boras, B, Cardin, RD, Carlo, A, Coffman, KJ, Dantonio, A, Di, L, Eng, H, Ferre, R, Gajiwala, KS, Gibson, SA, Greasley, SE, Hurst, BL, Kadar, EP, Kalgutkar, AS, Lee, JC, Lee, J, Liu, W, Mason, SW, Noell, S, Novak, JJ, Obach, RS, Ogilvie, K, Patel, NC, Pettersson, M, Rai, DK, Reese, MR, Sammons, MF, Sathish, JG, Singh, RSP, Steppan, CM, Stewart, AE, Tuttle, JB, Updyke, L, Verhoest, PR, Wei, L, Yang, Q and Zhu, Y (2021) An oral SARS-CoV-2 Mpro inhibitor clinical candidate for the treatment of COVID-19. Science (New York, N.Y.) 374, 15861593.CrossRefGoogle ScholarPubMed
Painter, GR, Natchus, MG, Cohen, O, Holman, W and Painter, WP (2021) Developing a direct acting, orally available antiviral agent in a pandemic: the evolution of molnupiravir as a potential treatment for COVID-19. Current Opinion in Virology 50, 1722.CrossRefGoogle Scholar
Tani, H, Kimura, M, Tan, L, Yoshida, Y, Ozawa, T, Kishi, H, Fukushi, S, Saijo, M, Sano, K, Suzuki, T, Kawasuji, H, Ueno, A, Miyajima, Y, Fukui, Y, Sakamaki, I, Yamamoto, Y and Morinaga, Y (2021) Evaluation of SARS-CoV-2 neutralizing antibodies using a vesicular stomatitis virus possessing SARS-CoV-2 spike protein. Virology Journal 18, 16.CrossRefGoogle ScholarPubMed
Unoh, Y, Uehara, S, Nakahara, K, Nobori, H, Yamatsu, Y, Yamamoto, S, Maruyama, Y, Taoda, Y, Kasamatsu, K, Suto, T, Kouki, K, Nakahashi, A, Kawashima, S, Sanaki, T, Toba, S, Uemura, K, Mizutare, T, Ando, S, Sasaki, M, Orba, Y, Sawa, H, Sato, A, Sato, T, Kato, T and Tachibana, Y (2022) Discovery of S-217622, a noncovalent oral SARS-CoV-2 3CL protease inhibitor clinical candidate for treating COVID-19. Journal of Medicinal Chemistry 65, 64996512.CrossRefGoogle ScholarPubMed
van der Strate, BW, Beljaars, L, Molema, G, Harmsen, MC and Meijer, DK (2001) Antiviral activities of lactoferrin. Antiviral Research 52, 225239.CrossRefGoogle ScholarPubMed
Vitiello, A, Ferrara, F, Troiano, V and La Porta, R (2021) COVID-19 vaccines and decreased transmission of SARS-CoV-2. Inflammopharmacology 29, 13571360.CrossRefGoogle ScholarPubMed
Yamamoto, M, Kiso, M, Sakai-Tagawa, Y, Iwatsuki-Horimoto, K, Imai, M, Takeda, M, Kinoshita, N, Ohmagari, N, Gohda, J, Semba, K, Matsuda, Z, Kawaguchi, Y, Kawaoka, Y and Inoue, J (2020) The anticoagulant Nafamostat potently inhibits SARS-CoV-2 S protein-mediated fusion in a cell fusion assay system and viral infection in vitro in a cell-type-dependent manner. Viruses 12, 629.CrossRefGoogle Scholar
Zhu, N, Zhang, D, Wang, W, Li, X, Yang, B, Song, J, Zhao, X, Huang, B, Shi, W, Lu, R, Niu, P, Zhan, F, Ma, X, Wang, D, Xu, W, Wu, G, Gao, GF and Tan, W (2020) A novel coronavirus from patients with pneumonia in China, 2019. The New England Journal of Medicine 382, 727733.CrossRefGoogle ScholarPubMed