Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-22T09:04:19.605Z Has data issue: false hasContentIssue false

The colloidal phosphate of milk: III. Nature of its association with casein

Published online by Cambridge University Press:  01 June 2009

T. C. A. McGann
Affiliation:
Dairy Chemistry Department, University College, Cork
G. T. Pyne
Affiliation:
Dairy Chemistry Department, University College, Cork

Summary

Removal of colloidal phosphate leads to changes in the propertics of milk of which the increased viscosity and greatly increased sensitivity to calcium salts, and the apparently diminished degree of mutual integration of the various casein fractions are the most striking. Re-introduction of colloidal phosphate restores incompletely and only in certain instances the original properties of the milk.

These observations are interpreted as favouring the conception of chemical links between colloidal phosphate and casein in milk.

Type
Original Articles
Copyright
Copyright © Proprietors of Journal of Dairy Research 1960

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Choate, W. L., Heckman, F. A. & Ford, T. F. (1959). J. Dairy Sci. 42, 761.Google Scholar
Davies, D. T. & White, J. C. D. (1958). J. Dairy Res. 25, 256.CrossRefGoogle Scholar
Dyachesko, P. F. (1959). Proc. XVth Int. Dairy Congr. 2, 629.Google Scholar
Eilers, H. (1947). Chemical and Physical Investigations on Dairy Products; The Colloid Chemistry of Skim milk. Amsterdam: Elsevier.Google Scholar
Evenhuis, N. & de Vries, Th. R. (1956 a). Ned. melk- en Zuiveltijdschr. 10, 1.Google Scholar
Evenhuis, N. & de Vries, Th. R. (1956 b). Ned. melk- en Zuiveltijdschr. 10, 180.Google Scholar
Ford, T. F., Ramsdell, G. A. & Landsman, S. G. (1955). J. Dairy Sci. 38, 843.CrossRefGoogle Scholar
Ford, T. F. & Martinez-Mateo, J. (1958). J. Dairy Sci. 41, 1286.CrossRefGoogle Scholar
Hostettler, H. & Rüegger, H. R. (1950). Landw. Jb. Schweiz, 64, 669.Google Scholar
Hostettler, H. & Rychener, E. (1949). Proc. Xllth Int. Dairy Congr. 2, 175.Google Scholar
Lowry, O. H., Rosenbrough, N. J., Farr, A. L. & Randall, R. J. (1951). J. biol. Chem. 193, 265.CrossRefGoogle Scholar
Mulder, H. & Schipper, C. J. (1959). Ned. melk- en Zuiveltijdschr. 13, 137.Google Scholar
Philpot, J. St L. (1938). Nature, Lond., 142, 1024. (In report of discussion on ‘The protein molecule’.)Google Scholar
Pyne, G. T. (1929). J. agric. Sci. 19, 463.Google Scholar
Pyne, G. T. (1934). Biochem. J. 28, 940.CrossRefGoogle Scholar
Pyne, G. T. (1951). Chem. & Ind. p. 171.Google Scholar
Pyne, G. T. (1953). Chem. & Ind. p. 302.Google Scholar
Pyne, G. T. (1958). J. Dairy Res. 25, 467.CrossRefGoogle Scholar
Pyne, G. T. & McGann, T. C. A. (1960). J. Dairy Res. 27, 9.Google Scholar
Pyne, G. T. & McHenry, K. (1955). J. Dairy Res. 22, 60.CrossRefGoogle Scholar
Schober, R. & Hetzel, H. F. (1957). Milchwissenschaft, 12, 12.Google Scholar
Sullivan, R. A., Fitzpatrick, M. & Stanton, E. K. (1959). Nature, Lond., 183, 616.Google Scholar
ter Horst, M. G. (1947). Ned. melk- en Zuiveltijdschr. 1, 137.Google Scholar
ter Horst, M. G. (1950). Ned. melk- en Zuiveltijdschr. 4, 246.Google Scholar
Waugh, D. F. & von Hippel, P. H. (1956). J. Amer. chem. Soc. 78, 4576.Google Scholar
Waugh, D. F. (1958). Disc. Faraday Soc. 25, 186.CrossRefGoogle Scholar