Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-22T17:07:14.762Z Has data issue: false hasContentIssue false

Biospecific chromatography of chymosin on quinonated Sepharose and its application to enzyme content determination in rennets

Published online by Cambridge University Press:  01 June 2009

Francesco Di Gregorio
Affiliation:
ASSORENI, Laboratories for Biochemical Processes, 00015 Monterotondo, Rome, Italy
Raffaello Sisto
Affiliation:
ASSORENI, Laboratories for Biochemical Processes, 00015 Monterotondo, Rome, Italy
Franco Morisi
Affiliation:
ASSORENI, Laboratories for Biochemical Processes, 00015 Monterotondo, Rome, Italy

Summary

An insoluble benzoquinone derivative, obtained by reacting benzoquinone with Sepharose 4B and subsequent deactivation with ethanolamine, selectively absorbed chymosin from a mixture of milk-clotting enzymes and other proteins such as in rennets. This selective absorption has been used for developing a purification method and for quantitatively estimating the chymosin content of commercial rennets. Thus, from a powdered calf rennet, it was possible to obtain in one step an 8-fold purified chymosin free of bovine pepsins. The proposed analytical test involves 2 milk-clotting activity measurements and a chromatographic elution of the sample on a quinonated Sepharose column. It can be applied directly to commercial rennets, because it does not require pre-dialysis of the sample against the elution buffer. Furthermore, a combination of quinonated Sepharose and DEAE-cellulose chromatography gave a method for isolation of bovine pepsin I from rennets.

Type
Original Articles
Copyright
Copyright © Proprietors of Journal of Dairy Research 1979

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Antonini, J. & Ribadeau Dumas, B. (1971). Biochimie 53, 321.Google Scholar
Brandt, J., Andersson, L. O. & Porath, J. (1975). Biochimica et Biophysica Acta 386, 196.CrossRefGoogle Scholar
Di Gregorio, F. & Morisi, F. (1975). Italian Patent Application N. 22140 (Chemical Abstracts 86, 1744 h).Google Scholar
Foltmann, B. (1970). Methods in Enzymology 19, 421.Google Scholar
Garnot, P., Thapon, J. L., Mathieu, C. M., Maubois, J. L. & Ribadeau Dumas, B. (1972). Journal of Dairy Science 55, 1641.CrossRefGoogle Scholar
Losi, G. & Ribadeau-Dumas, B. (1973). Scienza e Tecnologia degli Alimenti 3, 145.Google Scholar
Lowry, O. H., Rosebrough, N. J., Farr, A. L. & Randall, R. J. (1951). Journal of Biological Chemistry 193, 265.Google Scholar
Mulvihill, D. M. & Fox, P. F. (1977). Journal of Dairy Research 44, 319.CrossRefGoogle Scholar
Nelson, J. H. (1975). Journal of Dairy Science 58, 1739.Google Scholar
O'Leary, P. A. & Fox, P. F. (1974). Journal of Dairy Research 41, 381.Google Scholar
Righetti, P. G., Molinari, B. M. & Molinari, G. (1977). Journal of Dairy Research 44, 69.Google Scholar
Rothe, G. A. L., Axelsen, N. H., Jøhnk, P. & Foltmann, B. (1976). Journal of Dairy Research 43, 85.Google Scholar
Ŝicho, V. & Huŝek, V. (1974). Milchwissenschaft 29, 668.Google Scholar
Stepanov, V. M., Lavrenova, G. I., Adli, K., Gonchar, M. V., Balandina, G. N., Slavinskaya, M. M. & Strongin, A. Ya. (1976). Biokhimiya 41, 294.Google Scholar