Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-26T11:51:56.870Z Has data issue: false hasContentIssue false

The action of rennin on casein: the effect of modifying functional groups on the casein

Published online by Cambridge University Press:  01 June 2009

R. D. Hill
Affiliation:
Division of Dairy Research, C.S.I.R.O., Melbourne, Australia
Raione R. Laing
Affiliation:
Division of Dairy Research, C.S.I.R.O., Melbourne, Australia

Summary

k-Casein and whole casein when photo-oxidized in the presence of methylene blue lose the ability to clot when treated with rennin. Two effects are involved—first the photo-oxidation alters the k-casein fraction so that the rennin is unable to split off the glycopeptide fragment, and secondly, in whole casein the photo-oxidation interferes with the aggregation in the presence of Ca++ that normally follows rennin action. As a result of amino acid analysis and specific treatments which affect other photo-oxidizable side chains, it is concluded that both of these effects are caused by the alteration of histidines.

Type
Original Articles
Copyright
Copyright © Proprietors of Journal of Dairy Research 1965

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alais, C. & Jollés, P. (1961). Biochim. biophys. Acta, 51, 315.CrossRefGoogle Scholar
Bargoni, Nora (1963). Enzymologia, 26, 108.Google Scholar
Bellamy, L. J. (1958). The infra-red spectra of complex Molecules, 2nd ed., p. 358. London: Methuen.Google Scholar
Berridge, N. J. & Woodward, C. (1953). J. Dairy Res. 20, 255.Google Scholar
Cobbett, W. G., Kenchington, A. W. & Ward, A. G. (1962). Biochem. J. 84, 468.Google Scholar
Greenstein, J. P. & Winitz, M. (1961). Chemistry of the Amino Acids, p. 1979. New York: Wiley.Google Scholar
Higgins, H. D. & Fraser, D. (1954). Aust. J. biol. Sci. 7, 85.CrossRefGoogle Scholar
Hill, R. D. & Hansen, Raione R. (1963). J. Dairy Res. 30, 375.CrossRefGoogle Scholar
Hill, R. D. & Hansen, Raione R. (1964). J. Dairy Res. 31, 291.Google Scholar
Hsu, R. Y. H., Anderson, L., Baldwin, R. L., Ernstrom, C. A. & Swanson, A. M. (1958). Nature, Lond., 182, 798.Google Scholar
Jollés, P., Alais, C. & Jollés, J. (1961). Biochim. biophys. Acta, 51, 309.CrossRefGoogle Scholar
Koshland, D. E., Karkhanis, Y. D. & Latham, H. G. (1964). J. Am. chem. Soc. 86, 1448.CrossRefGoogle Scholar
Lissitzky, S. & Rolland, M. (1962). Biochim. biophys. Acta, 56, 95.CrossRefGoogle Scholar
McFarlane, A. S. (1938). Nature, Lond., 142, 1023.Google Scholar
McKenzie, H. A. & Wake, R. G. (1961). Biochim. biophys. Acta, 47, 240.CrossRefGoogle Scholar
Nitschmann, H. & Beeby, R. (1960). Chimia, 14, 318.Google Scholar
Saifer, A., Gerstenfeld, S. & Vecsler, F. (1961). Clin. Chem. 7, 626.CrossRefGoogle Scholar
Schachter, H. & Dixon, G. H. (1964). J. biol. Chem. 239, 813.Google Scholar
Sluyterman, L. A. Ae. (1962). Biochim. biophys. Acta, 60, 557.CrossRefGoogle Scholar
Tristram, G. R. (1949). Advances in Protein Chemistry (ed., Anson, M. L. and Edsall, J. T.), vol. 5, p. 103. New York: Academic Press.Google Scholar
Wake, R. G. (1959). Aust. J. biol. Sci. 12, 479.Google Scholar
Waugh, D. F. & Hippel, P. H. von (1956). J. Am. chem. Soc. 78, 4576.Google Scholar
Weil, L. & Seibles, T. S. (1955). Archs. Biochem. Biophys. 54, 368.CrossRefGoogle Scholar
Zittle, C. A. (1963). J. Dairy Sci. 46, 607.Google Scholar
Zittle, C. A. (1964). J. Dairy Sci. 47, 672.Google Scholar