Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-29T19:44:14.424Z Has data issue: false hasContentIssue false

A study of cow's milk containing high levels of linoleic acid: isolation and properties of the fat-globule membrane

Published online by Cambridge University Press:  01 June 2009

R. W. Sleigh
Affiliation:
Division of Food Research, Food Research Laboratory, C.S.I.R.O., North Ryde, N.S.W. 2113, Australia
Joan M. Bain
Affiliation:
Division of Food Research, Food Research Laboratory, C.S.I.R.O., North Ryde, N.S.W. 2113, Australia
R. W. Burley
Affiliation:
Division of Food Research, Food Research Laboratory, C.S.I.R.O., North Ryde, N.S.W. 2113, Australia

Summary

Properties of whole milk and milk fractions from cows fed a diet that gave a greatly increased proportion of unsaturated fatty acid residues (especially of linoleic acid) in the milk lipids were studied, and this milk (high-linoleic milk) was compared with milk from cows on a control diet (control milk). The milk fractions were isolated by high-speed centrifugation of whole milk or cream and were examined by chemical analysis and electron microscopy. During centrifugation the globules of milk fat were disrupted and the membranes (fat-globule ‘ghosts’) floated as a layer beneath the free lipid. Membrane proteins from the 2 sorts of milk gave the same electrophoretic pattern and the amino acid compositions were the same. Lipid analysis of the membrane fraction from high-linoleic milk showed the expected increase in the proportion of unsaturated fatty acid residues in the neutral lipids, but there was an unexpected decrease in the proportion of unsaturated residues in the membrane phospholipids. No differences were found between high-linoleic and control milk in the ultrastructure of the milk-fat globules or the isolated membranes.

Type
Original Articles
Copyright
Copyright © Proprietors of Journal of Dairy Research 1976

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Anderson, M. (1974). Journal of Dairy Science 57, 399.CrossRefGoogle Scholar
Anderson, M. & Cheeseman, G. C. (1971). Journal of Dairy Research 38, 409.Google Scholar
Bain, J. M. & Gove, D. W. (1971). Journal of Microscopy (Oxf). 93, 159.CrossRefGoogle Scholar
Bargmann, W., Fleischhauer, K. & Knoop, A. (1961). Zeitschrift für Zellforschung und Mikroskopische Anatomie 53, 545.CrossRefGoogle Scholar
Bargmann, W. & Knoop, A. (1959). Zeitschrift für Zellforschung und Mikroskopische Anatomie 49, 344.Google Scholar
Bligh, E. G. & Dyer, W. J. (1959). Canadian Journal of Biochemistry and Physiology 37, 911.CrossRefGoogle Scholar
Board, P. W., Bain, J. M., Gove, D. W. & Mullett, J. T. (1970). Journal of Dairy Research 37, 513.Google Scholar
Buchanan, R. A. & Rogers, W. P. (1973). Australian Journal of Dairy Technology 28, 175.Google Scholar
Carroll, K. K. (1963). Journal of the American Oil Chemists' Society 40, 413.CrossRefGoogle Scholar
Copius Peereboom, J. W. (1969). Fette Seifen Anstrichmittel 71, 314.CrossRefGoogle Scholar
Dittmer, J. C. & Lester, R. L. (1964). Journal of Lipid Research 5, 126.Google Scholar
Fiske, C. H. & Subbarow, Y. (1925). Journal of Biological Chemistry 66, 375.CrossRefGoogle Scholar
Green, M. R., Pastewka, J. V. & Peacock, A. C. (1973). Analytical Biochemistry 56, 43.CrossRefGoogle Scholar
Hayat, M. A. & Giaquinta, R. (1970). Tissue and Cell 2, 191.CrossRefGoogle Scholar
Hood, R. L., Thompson, E. H. & Allen, C. E. (1972). International Journal of Biochemistry 3, 598.CrossRefGoogle Scholar
Kernohan, E. A. & Lepherd, E. E. (1969). Journal of Dairy Research 36, 177.CrossRefGoogle Scholar
Kitchen, B. J. (1974). Biochimica et Biophysica Acta 356, 257.Google Scholar
Kobylka, D. & Carraway, K. L. (1972). Biochimica et Biophysica Acta 288, 282.CrossRefGoogle Scholar
Kohn, J. (1968). In Chromatographic and Electrophoretic Techniques, vol. 2, p. 101. (Ed. Smith, I..) London: Heinemann.Google Scholar
Mangino, M. E. & Brunner, J. R. (1975). Journal of Dairy Science 58, 313.Google Scholar
Mercer, E. H. & Birbeck, M. S. C. (1973). Electron Microscopy: a Handbook for Biologists, 3rd edn.Oxford: Blackwell Scientific Publications.Google Scholar
Morr, C. V. (1973). Journal of Dairy Science 56, 1258.CrossRefGoogle Scholar
Mulder, H. & Walstra, P. (1974). The Milk Fat Globule. Farnham Royal: Commonwealth Agricultural Bureaux.Google Scholar
Patton, S. (1973). Journal of the American Oil Chemists' Society 50, 178.Google Scholar
Reynolds, E. S. (1963). Journal of Cell Biology 17, 208.CrossRefGoogle Scholar
Scott, T. W., Cook, L. J. & Mills, S. C. (1971). Journal of the American Oil Chemists' Society 48, 358.Google Scholar
Sleigh, R. W. & Burley, R. W. (1974). Proceedings of the Australian Biochemical Society 7, 60.Google Scholar
Stewart, P. S. & Irvine, D. M. (1970). Journal of Dairy Science 53, 279.CrossRefGoogle Scholar
Stoeckenius, W. & Mahr, S. C. (1965). Laboratory Investigation 14, 1196.Google Scholar
Vetter, W., Englert, G., Rigassi, N. & Schwieter, U. (1971). In Carotenoids, p. 189. (Ed. Isler, O..) Basel: Birkhäuser Verlag.CrossRefGoogle Scholar
Weber, K.Pringle, J. R. & Osborn, M. (1972). Methods in Enzymology 26, 3.CrossRefGoogle Scholar
Wooding, F. B. P. (1971 a). Journal of Cell Science 9, 805.Google Scholar
Wooding, F. B. P. (1971 b). Journal of Ultrastructure Research 37, 388.CrossRefGoogle Scholar
Wortmann, A. (1964). Electron Microscopy: Proceedings 3rd European Regional Conference, Prague, vol. B p. 3.Google Scholar