Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-09T20:05:27.737Z Has data issue: false hasContentIssue false

Role of Penicillium roqueforti proteinases during blue cheese ripening

Published online by Cambridge University Press:  01 June 2009

Dominique Le Bars
Affiliation:
Laboratoire de Biochimie et Technologie Laitieères, Institut National de la Recherche Agronomique, C.N.R.Z., 78350 Jouy-en-josas, France
Jean-Claude Gripon
Affiliation:
Laboratoire de Biochimie et Technologie Laitieères, Institut National de la Recherche Agronomique, C.N.R.Z., 78350 Jouy-en-josas, France

Summary

The hydrolysis of isolated αs1- and β-caseins by Penicillium roqueforti aspartyl proteinase produced comparable quantities of pH 4·6 soluble N. The amount of non-protein nitrogen obtained with β-casein was clearly lower than that obtained with αs1-casein, showing that few low molecular weight peptides were released when this casein was hydrolysed. Electrophoresis of αs1-casein hydrolysates produced by aspartyl proteinase showed 5 bands of mobility close to or higher than that of αs1-casein. β-Casein hydrolysates gave 4 bands, 2 of which (βPrapl and βPrap2) showed low electrophoretic mobility. The products corresponding to βPrapl and βPrap2 were purified from a β-casein hydrolysate and identified as fragments Val98-Val209 and Glu100-Val209 of β-casein respectively. The occurrence of the βPrapl and βPrap2 bands in electrophoretic patterns obtained from sterile curd with aspartyl proteinase and controlled-flora curd, where P. roqueforti was the only micro-organism developing, showed the presence of aspartyl proteinase synthesis and activity in cheese. A band of very low electrophoretic mobility (βPrmpl) was present in electrophoregrams of controlled-flora curd inoculated with P. roqueforti. This band, resulting from the action of the metalloproteinase on β-casein, revealed that this enzyme was both synthesized in and active in cheese.

Type
Original Articles
Copyright
Copyright © Proprietors of Journal of Dairy Research 1981

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Creamer, L. K. (1976). New Zealand Journal of Dairy Science and Technology 11, 3039.Google Scholar
Desmazeaud, M. J., Gripon, J. C., Le Bars, D. & Bergere, J. L. (1976). Lait 56, 379396.CrossRefGoogle Scholar
Devoyod, J. J., Bret, G. & Auclair, J. E. (1968). Lait 48, 613629.CrossRefGoogle Scholar
Gripon, J. C. (1977 a). Annates de Biologie animate Biochimie et Biophysique 17, 283298.CrossRefGoogle Scholar
Gripon, J. C. (1977 b). Biochimie 59, 679686.CrossRefGoogle Scholar
Gripon, J. C. & Debest, B. (1976). Lait 56, 423438.Google Scholar
Gripon, J. C., Desmazeaud, M. J., Le Bars, D. & Bergere, J. L. (1975). Lait 55, 502516.CrossRefGoogle Scholar
Gripon, J. C., J., Desmazeaud M., Le Bars, D. & Bergere, J. L. (1977). Journal of Dairy Science 60, 15321538.CrossRefGoogle Scholar
Gripon, J. C. & Hermier, J. (1974). Biochimie 56, 13231332.CrossRefGoogle Scholar
Ismail, A. A. & Hansen, K. (1972). Milchwissenschaft 27, 556559.Google Scholar
Le Bars, D., Desmazeaud, M. J., Gripon, J. C. & Bergere, J. L. (1975). Lait 55, 377389.Google Scholar
Mercier, J. C., Addeo, F. & Pelissier, J. P. (1976). Biochimie 58, 13031310.Google Scholar
Mercier, J. C., Grosclaude, F. & B., Ribadeau-Dumas (1970). European Journal of Biochemistry 14, 108119.CrossRefGoogle Scholar
Mercier, J. C., Maubois, J. L., Poznanski, S. & Ribadeau-Dumas, B. (1968). Bulletin de la Société de chimie Biologique 50, 521530.Google Scholar
Modler, H. W., Brunner, J. R. & Stine, C. M. (1974). Journal of Dairy Science 57, 528534.Google Scholar
Ribadeau-Dumas, B., Brignon, G., Grosclaude, F. & Mercier, J. C. (1972). European Journal of Biochemistry 25, 505514.Google Scholar
Zevaco, C., Hermier, J. & Gripon, J. C. (1973). Biochimie 55, 13531360.CrossRefGoogle Scholar