Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-26T11:49:14.176Z Has data issue: false hasContentIssue false

Proteolytic specificity of chymosin on bovine αs1-casein

Published online by Cambridge University Press:  01 June 2009

Donald M. Mulvihill
Affiliation:
Department of Food Chemistry, University College, Cork, Irish Republic
Patrick F. Fox
Affiliation:
Department of Food Chemistry, University College, Cork, Irish Republic

Summary

In dilute buffers ⋟ pH 5·8, chymosin hydrolysed bovine αs1-casein to αs1-I, αs1-II and αs1-III/αs1-IV in a sequential manner while at pH 4·6 αs1-casein was hydrolysed to αs1-I which was then hydrolysed to αs1-V. In the presence of 5 % (w/v) NaCl at pH 5·2, αs1-casein was hydrolysed to αs1-I which was then hydrolysed to αs1-VII and αs1-VIII. αs1-I, αs1-II and αs1-III/αs1-IV were isolated by chromatography on cellulose phosphate followed by preparative slab-gel electrophoresis; αs1-V was isolated by repeated preparative slab-gel electrophoresis and αs1-VII by gel filtration on Sephadex G-150 followed by preparative slab-gel electrophoresis. The mol. wts of the peptides, estimated by gel filtration on Sephadex G-100, were 21000, 17600, 15600, 19900 and 14600 for αs1-I, αs1-II, αs1-III/αs1-IV and αs1-V and αs1-VII respectively. Characterization of the peptides by amino acid, phosphorus and terminal residue analysis showed that they probably consisted of segments of the αs1-casein chain as follows: αs1-I: residues 24/25–199; αs1-II: residues 24/25–169; αs1-III/αs1-IV: residues 24/25–149–150; αs1-V: residues 29/33–199; αs1-VII: residues 56–179. Peptide bonds close to phosphate residues on the αs1-casein chain were not hydrolysed by chymosin at high pH values (⋟ 5·8) when the phosphate groups were charged, but became available for hydrolysis when the reaction pH was reduced. Proteolytic specificity was also modified by NaCl.

Type
Original Articles
Copyright
Copyright © Proprietors of Journal of Dairy Research 1979

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Allen, R. J. L. (1940). Biochemical Journal 34, 858.CrossRefGoogle Scholar
Ambler, R. P. (1972). Methods in Enzymology 25, 262.CrossRefGoogle Scholar
Cerbulis, J., Custer, J. H. & Zittle, C. A. (1959). Archives of Biochemistry and Biophysics 84, 417.CrossRefGoogle Scholar
Cerbulis, J., Custer, J. H. & Zittle, C. A. (1960). Journal of Dairy Science 43, 1725.Google Scholar
Creamer, L. K. (1974). Journal of Dairy Science 57, 341.CrossRefGoogle Scholar
Creamer, L. K. & Richardson, B. C. (1974). New Zealand Journal of Dairy Science & Technology 9, 9.Google Scholar
De Jong, L. & De Groot-Mostert, A. E. A. (1977). Netherlands Milk & Dairy Journal 31, 296.Google Scholar
Edelhoch, H. (1967). Biochemistry 6, 1948.CrossRefGoogle Scholar
Fish, J. C. (1957). Nature 180, 345.CrossRefGoogle Scholar
Foster, P. M. D. & Green, M. L. (1974). Journal of Dairy Research 41, 259.CrossRefGoogle Scholar
Fox, P. F. (1969). Journal of Dairy Science 52, 1214.CrossRefGoogle Scholar
Fox, P. F. (1970). Journal of Dairy Research 37, 173.Google Scholar
Fox, P. F. & Walley, B. F. (1971). Journal of Dairy Research 38, 165.CrossRefGoogle Scholar
Grosclaude, F., Mahé, M. F. & Ribadeau Dumas, B. (1973). European Journal of Biochemistry 40, 323.CrossRefGoogle Scholar
Hill, R. D., Lahav, E. & Givol, D. (1974). Journal of Dairy Research 41, 147.CrossRefGoogle Scholar
Ledford, R. A., Chen, J. H. & Nath, K. R. (1968). Journal of Dairy Science 51, 792.CrossRefGoogle Scholar
Ledford, R. A., O'sullivan, A. C. & Nath, K. R. (1966). Journal of Dairy Science 49, 1098.Google Scholar
Lindqvist, B. & Storgårds, T. (1959 a). Acta Chemica Scandinavica 13, 1839.CrossRefGoogle Scholar
Lindqvist, B. & Storgårds, T. (1959 b). 15th International Dairy Congress, London 2, 679.Google Scholar
Lindqvist, B. & Storgårds, T. (1962). 16th International Dairy Congress, Copenhagen B, 665.Google Scholar
Mercier, J. C, Grosclaude, F. & Ribadeau Dumas, B. (1972). Milchwissenschaft 27, 402.Google Scholar
Mulvihill, D. M. (1978). Thesis, National University of Ireland.Google Scholar
Mulvihill, D. M. & Fox, P. F. (1977). Journal of Dairy Research 44, 533.Google Scholar
Pelissier, J. P., Mercier, J. C. & Ribadeau Dumas, B. (1974). Annales de Biologie Animate, Biochimie, Biophysique 14, 343.CrossRefGoogle Scholar
Richardson, B. C. & Creamer, L. K. (1975). Biochimica et Biophysica Acta 393, 37.CrossRefGoogle Scholar
Stadhouders, J. (1962). 16th International Dairy Congress, Copenhagen B, 353.Google Scholar
Thompson, M. P., Kiddy, C. A., Johnston, J. O. & Weinberg, R. M. (1964). Journal of Dairy Science 47, 378.CrossRefGoogle Scholar
Zumwalt, R. W., Roach, D. & Gehrke, C. W. (1970). Journal of Chromatography 53, 171.Google Scholar