Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-09T14:35:55.710Z Has data issue: false hasContentIssue false

Progressive changes in individual milk protein concentrations associated with high somatic cell counts

Published online by Cambridge University Press:  01 June 2009

M. Anderson
Affiliation:
National Institute for Research in Dairying, Shinfield, Reading, RG2 9AT
A. T. Andrews
Affiliation:
National Institute for Research in Dairying, Shinfield, Reading, RG2 9AT

Summary

Progressive changes in the concentrations of milk protein components were followed after infusions of Streptococcus agalactiae or bacterial endotoxin into different quarters of individual cows. Both types of infusion produced similar increases in somatic cell count and resulted in similar changes in milk proteins, although the effects of the endotoxin infusion lasted for a shorter length of time.

The treatments had little effect on α-lactalbumin and β-lactoglobin concentrations, but serum albumin and immunoglobulin (Ig) concentrations increased markedly. The greatest effect on serum albumin was after the endotoxin infusion and on Ig after the Str. agalactiae infusion. Changes in the individual globulins indicated that passive transfer of blood proteins to milk could not account for the observed increases in IgM and IgA.

αs1-Casein and β-casein concentrations were reduced and inversely related to somatic cell count during the immediate post-infusion period, and this was accompanied by an increase in para-κ-casein. Para-κ-casein was not detected in pre-infusion or post-recovery milk samples. The decrease in β-casein was greater than that of αs1-casein. Casein concentrations returned to pre-infusion levels 2 d and 5 d after the endotoxin and Str. agalactiae infusions respectively.

The possibility that proteolytic enzymes are partly responsible for the changes in casein concentration is discussed.

Type
Original Articles
Copyright
Copyright © Proprietors of Journal of Dairy Research 1977

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Andrews, A. T. (1975). Journal of Dairy Research 42, 89.CrossRefGoogle Scholar
Andrews, A. T. (1976). Journal of Dairy Research 43, 127.CrossRefGoogle Scholar
Andrews, A. T. & Alichanidis, E. (1975). Journal of Dairy Research 42, 391.CrossRefGoogle Scholar
Andrews, A. T. & Cheeseman, G. C. (1971). Journal of Dairy Research 38, 193.CrossRefGoogle Scholar
Ashworth, U. S., Forster, T. L. & Luedecke, L. O. (1967). Journal of Dairy Science 50, 1078.CrossRefGoogle Scholar
Bortree, A. L., Carroll, E. J. & Schalm, O. W. (1962). Journal of Dairy Science 45, 1465.CrossRefGoogle Scholar
Brandon, M. R., Watson, D. L. & Lascelles, A. K. (1971). Australian Journal of Experimental Biology and Medical Science 49, 613.CrossRefGoogle Scholar
Brock, J. H., Steel, E. D. & Reiter, B. (1975). Research in Veterinary Science 19, 152.CrossRefGoogle Scholar
Butler, J. E. (1973). Journal of the American Veterinary Medical Association 163, 795.Google Scholar
Carroll, E. J., Schalm, O. W. & Lasmanis, J. (1963). Journal of Dairy Science 46, 1236.CrossRefGoogle Scholar
Carroll, E. J., Thompson, M. P. & Farrell, H. M. (1970). 28th Annual Proceedings of the Electron Microscope Society of America, p. 150.Google Scholar
Darling, D. F. & Butcher, D. W. (1976). Journal of Dairy Science 59, 863.CrossRefGoogle Scholar
Fahey, J. L. & McKelvey, E. M. (1965). Journal of Immunology 94, 84.CrossRefGoogle Scholar
Haenlein, G. F. W., Schultz, L. H. & Zikakis, J. P. (1973). Journal of Dairy Science 56, 1017.CrossRefGoogle Scholar
Harmon, R. J., Schanbacher, F. L., Ferguson, L. C. & Smith, K. L. (1976). Infection and Immunity 13, 533.CrossRefGoogle Scholar
Hillier, R. M. (1976). Journal of Dairy Research 43, 259.CrossRefGoogle Scholar
International Dairy Federation (1971). Annual Bulletin, Part 2, Appendix 1.Google Scholar
Kiddy, C. A., Groves, M. L., McCann, R. E. & Treece, J. M. (1968). Journal of Dairy Science 51, 954.Google Scholar
Kiddy, C. A., Rollins, R. E. & Zikakis, J. P. (1972). Journal of Dairy Science 55, 1506.CrossRefGoogle Scholar
Kim, Y. K., Yaguchi, M. & Rose, D. (1969). Journal of Dairy Science 52, 316.CrossRefGoogle Scholar
Kisza, J. & Sobina, A. (1962). Milchwissenschaft 17, 544.Google Scholar
Lascelles, A. K. & McDowell, G. H. (1974). Transplantation Reviews 19, 170.Google Scholar
Lascelles, A. K., Outteridge, P. M. & MacKenzie, D. D. S. (1966). Australian Journal of Experimental Biology and Medical Science 44, 169.CrossRefGoogle Scholar
Lyster, R. L. J. (1972). Journal of Dairy Research 39, 279.CrossRefGoogle Scholar
Mackenzie, D. D. S. & Lascelles, A. K. (1968). Australian Journal of Experimental Biology and Medical Science 46, 285.CrossRefGoogle Scholar
Newbould, F. H. S. (1974). In Lactation, vol. 2, p. 269. (Eds Larson, B. L. & Smith, V. R..) New York: Academic Press Inc.Google Scholar
Newbould, F. H. S. & Neave, F. K. (1965). Journal of Dairy Research 32, 157.CrossRefGoogle Scholar
Randolph, H. E., Erwin, R. E. & Richter, R. L. (1974). Journal of Dairy Science 57, 15.CrossRefGoogle Scholar
Singh, L. N. & Ganguli, N. C. (1975). Milchwissenschaft 30, 17.Google Scholar
Steel, E. D. (1975). Immunology 29, 31.Google Scholar
Waite, R., Abbot, J. & Blackburn, P. S. (1963). Journal of Dairy Research 30, 209.CrossRefGoogle Scholar
Waite, R. & Blackburn, P. S. (1963). Journal of Dairy Research 30, 23.CrossRefGoogle Scholar
Wheelock, J. V., Rook, J. A. F., Neave, F. K. & Dodd, F. H. (1966). Journal of Dairy Research 33, 199.CrossRefGoogle Scholar