Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-05T13:09:48.506Z Has data issue: false hasContentIssue false

Phagocytic activity of bovine polymorphonuclear neutrophil leucocytes

Published online by Cambridge University Press:  01 June 2009

Alfonso Zecconi
Affiliation:
Università degli Studi di Milano, Istituto Malattie Infettive Profilassi e Polizia Veterinaria, CNR Centro Studio Patologia della Mammella, Via Celoria 10, 20133 Milano, Italia
Valerio Bronzo
Affiliation:
Università degli Studi di Milano, Istituto Malattie Infettive Profilassi e Polizia Veterinaria, CNR Centro Studio Patologia della Mammella, Via Celoria 10, 20133 Milano, Italia
Renata Piccinini
Affiliation:
Università degli Studi di Milano, Istituto Malattie Infettive Profilassi e Polizia Veterinaria, CNR Centro Studio Patologia della Mammella, Via Celoria 10, 20133 Milano, Italia
Giovanna Spreafico
Affiliation:
Università degli Studi di Milano, Istituto Malattie Infettive Profilassi e Polizia Veterinaria, CNR Centro Studio Patologia della Mammella, Via Celoria 10, 20133 Milano, Italia
Gianfranco Ruffo
Affiliation:
Università degli Studi di Milano, Istituto Malattie Infettive Profilassi e Polizia Veterinaria, CNR Centro Studio Patologia della Mammella, Via Celoria 10, 20133 Milano, Italia

Summary

Two different investigations were conducted on the chemiluminescent activity of bovine milk polymorphonuclear neutrophil leucocytes (PMN) activated by different stimuli: zymosan, derived from the wall of Saccharomyces cerevisiae (Experiment A), and Streptococcus uberis and Escherichia coli (Experiment B). In Experiment A, a quarter with a phagocytic activity of PMN < 20 mV/1000 PMN following stimulation with zymosan was found to be 23 times more likely to be a clinical mastitis case than a quarter with phagocytic activity above this threshold value. In Experiment B, calculation of the odds ratio showed similar results following stimulation with Str. uberis or Esch. coli. These results provide evidence that immunocompromisation of mammary gland defences could predispose to clinical mastitis. They also support the need to challenge phagocytic cells with appropriate stimuli, and the Esch. coli test seems to be the most sensitive.

Type
Original Articles
Copyright
Copyright © Proprietors of Journal of Dairy Research 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Allen, B. C. & Loose, L. D. 1976 Phagocytic activation of a luminol-dependent chemiluminescence in rabbit alveolar and peritoneal macrophages. Biochemical and Biophysical Research Communications 69 245252CrossRefGoogle ScholarPubMed
Angle, M. J. & Klesius, P. H. 1983 Luminol-dependent chemiluminescence analysis of the variables of the phagocytic response by canine granulocytes. Veterinary Immunology and Immunopathology 4 333344Google Scholar
Babior, B. M. 1978 Oxygen-dependent microbial killing by phagocytes (two parts). New England Journal of Medicine 298 659668, 721725CrossRefGoogle ScholarPubMed
Bainton, D. F., Ullyot, J. L. & Farquhar, M. G. 1971 The development of neutrophilic polymorphonuclear leukocytes in human bone marrow. Origin and content of azurophil and specific granules. Journal of Experimental Medicine 134 907934CrossRefGoogle Scholar
Craven, N. & Williams, M. R. 1984 Defences of the bovine mammary gland against infection and prospects for their enhancement. Veterinary Immunology and Immunopathology 10 71127CrossRefGoogle Scholar
Cullor, J. S., Smith, W. L. & Selsted, M. E. 1990 The in-vitro antimicrobial activity of natural antibiotics against clinical isolates from bovine mastitis. International Symposium on Bovine Mastitis, Indianapolis, USA5559Google Scholar
DeChatelet, L. R., Long, G. D., Shirley, P. S., Bass, D. A., Thomas, M. J., Henderson, F. W. & Cohen, M. S. 1982 Mechanism of the luminol-dependent chemiluminescence of human neutrophils. Journal of Immunology 129 15891593CrossRefGoogle ScholarPubMed
Dulin, A. M., Paape, M. J. & Nickerson, S. C. 1988 Comparison of phagocytosis and chemiluminescence by blood and mammary gland neutrophils from multiparous and nulliparous cows. American Journal of Veterinary Research 49 172177Google Scholar
Fleiss, J. L. 1981 Statistical Method for Rates and Proportions, 2nd edn.New York: John Wiley & SonsGoogle Scholar
Gennaro, R., Dolzani, L. & Romeo, D. 1983 Potency of bactericidal proteins purified from the large granules of bovine neutrophils. Infection & Immunity 40 684690CrossRefGoogle ScholarPubMed
Guidry, A. J., Paape, M. J. & Pearson, R. E. 1976 Effects of parturition and lactation on blood and milk cell concentrations, corticosteroids, and neutrophil phagocytosis in the cow. American Journal of Veterinary Research 37 11951200Google ScholarPubMed
International Dairy Federation 1981 Laboratory methods for use in mastitis work. Brussels: IDF (International Dairy Federation Bulletin no. 132)Google Scholar
International Dairy Federation 1984 Recommended methods for somatic cell counting in milk. Brussels: IDF (International Dairy Federation Bulletin no. 168)Google Scholar
Klebanoff, S. J. & Clark, R. A. 1978 The Neutrophil: Function and Clinical Disorders. Amsterdam: North Holland Publishing Co.Google Scholar
Kleinbaum, D. G., Kupper, L. L. & Morgenstern, H. 1982 Epidemiologic Research—Principles and Quantitative Methods. New York: Van Nostrand ReinholdGoogle Scholar
Metcalf, J. A., Gallin, J. I., Nauseef, W. M. & Root, R. K. 1986 Laboratory Manual of Neutrophil Function. New York: Raven PressGoogle Scholar
Outteridge, P. M. & Lee, C. S. 1988 The defence mechanisms of the mammary gland of domestic ruminants. In Moving Frontiers in Veterinary Immunology, pp. 165196 (Ed. Pandey, R.). Basel: KargerGoogle Scholar
Paape, M., Guidry, A. J., Jain, N. C. & Miller, R. H. 1990 Cellular defence mechanisms in the udder. Proceedings of the International Conference, Mastitis: Physiology or Pathology?, Ghent 95104Google Scholar
Paape, M. J., Wergin, W. P., Guidry, A. J. & Pearson, R. E. 1979 Leukocytes. Second line of defense against invading mastitis pathogens. Journal of Dairy Science 62 135153CrossRefGoogle ScholarPubMed
Saad, A. M. 1987 Flow cytometric measurement of bovine milk neutrophil phagocytosis. Acta Veterinaria Scandinavica 28 333342CrossRefGoogle ScholarPubMed
Sandgren, C. H., Nordling, K. & Bjork, I. 1991 Isolation and phagoeytic properties of neutrophils and other phagocytes from nonmastitic bovine milk. Journal of Dairy Science 74 29652975Google Scholar
Schlesselman, J. J. 1982 Case Control Studies: Design, Conduct, Analysis. New York: Oxford University PressGoogle Scholar
Smith, K. L., Todhunter, D. A. & Schoenberger, P. S. 1985 Environmental mastitis: cause, prevalence, prevention Journal of Dairy Science 68 15311553CrossRefGoogle ScholarPubMed
Yam, L. T., Li, C. Y. & Crosby, W. H. 1971 Cytochemical identification of monocytes and granulocytes. American Journal of Clinical Pathology 55 283289Google Scholar
Zecconi, A., Hamann, J., Bronzo, V. & Ruffo, G. 1992 Machine-induced teat tissue reactions and infection risk in a dairy herd free from contagious mastitis pathogens. Journal of Dairy Research 59 265271CrossRefGoogle Scholar
Zecconi, A. & Ruffo, G. 1989 Evaluation of some immunological parameters of mammary gland. Proceedings of the International Conference on Mastitis, St Georgen, Austria 141145Google Scholar
Zecconi, A., Buffo, G. & Vezzoli, F. 1990 Environmental mastitis and immunological status of the udder. International Symposium on Bovine Mastitis, Indianapolis, USA414415Google Scholar
Zecconi, A., Streparola, G. & Antonini, M. 1988 [Research on phagocytic activity of milk PMN and macrophages v. different pathogens.] Atti della Società Italiana de Buiatria 20 591595Google Scholar