Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-22T13:55:19.590Z Has data issue: false hasContentIssue false

Observations on the use of 2,4-dinitrophenylhydrazine and of 2,6-dichlorophenolindophenol for the determination of vitamin C in raw and in heat-treated milk

Published online by Cambridge University Press:  01 June 2009

Joyce Toothill
Affiliation:
National Institute for Research in Dairying, Shinfield, Reading
S. Y. Thompson
Affiliation:
National Institute for Research in Dairying, Shinfield, Reading
J. Edwards-Webb
Affiliation:
National Institute for Research in Dairying, Shinfield, Reading

Summary

A study has been made of methods using 2,4-dinitrophenylhydrazine (DNPH) or 2,6-dichlorophenolindophenol (DCP) for the determination of vitamin C (ascorbic acid+dehydroascorbic acid) in raw, UHT processed, evaporated and sterilized milk.

Interfering substances were not detected in milk that had received a heat treatment no more severe than 145°C for 4 s (UHT process), so that either reagent could be used.

With more drastic heat treatment, interfering substances were formed and only the DNPH method with column and thin layer chromatography of the DNPH derivatives was specific for vitamin C. With in-bottle sterilized milk, the values for ascorbic acid were (in mg/100 ml) 1·16 (DCP method with H2S reduction); 0·58 (DCP method with Escherichia coli reduction); 0·64 (DNPH method); 0·33 (DNPH method combined with chromatography).

In our experience the DNPH method combined with chromatography of the derivatives is highly specific for vitamin C and should be used to check the results obtained by other and simpler methods.

Type
Original Articles
Copyright
Copyright © Proprietors of Journal of Dairy Research 1970

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Association of Vitamin Chemists (1966). Methods of Vitamin Assay, 3rd edn, p. 332. New York: Interscience.Google Scholar
Bolin, D. W. & Book, L. (1947). Science, N.Y. 106, 451.CrossRefGoogle Scholar
Doan, F. J. & Josephson, D. V. (1943). J. Dairy Sci. 26, 1031.CrossRefGoogle Scholar
Ford, J. E., Porter, J. W. G., Thompson, S. Y., Toothill, J. & Edwards-Webb, J. (1969). J. Dairy Res. 36, 447.Google Scholar
Fujita, A. & Iwatake, D. (1935). Biochem. Z. 277, 293.Google Scholar
Gordon, J. & Noble, I. (1959). Fd Res. 24, 1.Google Scholar
Gunsalus, I. C. & Hand, D. B. (1941). J. biol. Chem. 141, 853.CrossRefGoogle Scholar
Hansson, E. & Håkansson, E.-B. (1953). 13th Int. Dairy Congr. The Hague 3, 1277.Google Scholar
Hartman, A. M. & Dryden, L. P. (1965). Vitamins in Milk and Milk Products. Champaign, Illinois: American Daily Science Association.Google Scholar
Henry, K. M., Houston, J., Kon, S. K. & Osborne, L. W. (1939). J. Dairy Res. 10, 272.CrossRefGoogle Scholar
Kon, S. K. & Watson, M. B. (1936). Biochem. J. 30, 2273.CrossRefGoogle Scholar
Levenson, S. M., Rosen, H. & Hitchings, G. H. (1951). Archs Biochem. Biophys. 33, 50.Google Scholar
Lowry, O. H., Lopez, J. A. & Bessey, O. A. (1945). J. biol. Chem. 160, 609.CrossRefGoogle Scholar
Lugg, J. W. H. (1942). Aust. J. exp. Biol. med. Sci. 20, 273.CrossRefGoogle Scholar
Lyman, C. M., Schultze, M. O. & King, C. G. (1937). J. biol. Chem. 118, 757.Google Scholar
Mapson, L. W. (1943). Nature, Lond. 152, 13.CrossRefGoogle Scholar
Mapson, L. W. (1961). Biochem. J. 80, 459.CrossRefGoogle Scholar
Mapson, L. W. & Ingram, M. (1951). Biochem. J. 48, 551.CrossRefGoogle Scholar
Mattick, A. T. R., Hiscox, E. R., Crossley, E. L., Lea, C. H., Findlay, J. D., Smith, J. A. B., Thompson, S. Y., Kon, S. K. & Egdell, J. W. (1945). J. Dairy Res. 14, 116.CrossRefGoogle Scholar
Mills, M. B. & Roe, J. H. (1947). J. biol. Chem. 170, 159.Google Scholar
Musulin, R. R. & King, C. G. (1936). J. biol. Chem. 116, 409.CrossRefGoogle Scholar
Roe, J. H. & Kuether, C. A. (1943). J. biol. Chem. 147, 399.CrossRefGoogle Scholar
Roe, J. H., Mills, M. B., Oesterling, M. J. & Damron, C. M. (1948). J. biol. Chem. 174, 201.CrossRefGoogle Scholar
Roe, J. H. & Oesterling, M. J. (1944). J. biol. Chem. 152, 511.Google Scholar
Schwartz, M. A. & Williams, J. N. Jr (1955). Proc. Soc. exp. Biol. Med. 88, 136.Google Scholar
Snow, G. A. & Zilva, S. S. (1944). Biochem. J. 38, 458.Google Scholar
Stewart, A. P. Jr & Sharp, P. F. (1945). Ind. Engng Chem. anlyt. Edn 17, 373.Google Scholar
Strohecker, T. & Henning, H. M. (1965). Vitamin Assay: Tested Methods, p. 247. Weinheim: Verlag Chemie.Google Scholar
Tobias, J. & Herreid, E. O. (1959). J. Dairy Sci. 42, 428.Google Scholar
Vuilleumier, J. P. & Nobile, S. (1962). Proc. 12th Wld Poult. Congr. Sydney p. 238.Google Scholar